Suppr超能文献

新冠疫情期间移动需求变化下的动态活动链模式估计

Dynamic activity chain pattern estimation under mobility demand changes during COVID-19.

作者信息

Liu Yan, Tong Lu Carol, Zhu Xi, Du Wenbo

机构信息

School of Electronic and Information Engineering, Beihang University, Beijing 100191, PR China.

Shenyuan Honors College, Beihang University, Beijing 100191, PR China.

出版信息

Transp Res Part C Emerg Technol. 2021 Oct;131:103361. doi: 10.1016/j.trc.2021.103361. Epub 2021 Aug 25.

Abstract

During the coronavirus disease 2019 pandemic, the activity engagement and travel behavior of city residents have been impacted by government restrictions, such as temporary city-wide lockdowns, the closure of public areas and public transport suspension. Based on multiple heterogeneous data sources, which include aggregated mobility change reports and household survey data, this paper proposes a machine learning approach for dynamic activity chain pattern estimation with improved interpretability for examining behavioral pattern adjustments. Based on historical household survey samples, we first establish a computational graph-based discrete choice model to estimate the baseline travel tour parameters before the pandemic. To further capture structural deviations of activity chain patterns from day-by-day time series, we define the activity-oriented deviation parameters within an interpretable utility-based nested logit model framework, which are further estimated through a constrained optimization problem. By incorporating the long short-term memory method as the explainable module to capture the complex periodic and trend information before and after interventions, we predict day-to-day activity chain patterns with more accuracy. The performance of our model is examined based on publicly available datasets such as the 2017 National Household Travel Survey in the United States and the Google Global Mobility Dataset throughout the epidemic period. Our model could shed more light on transportation planning, policy adaptation and management decisions during the pandemic and post-pandemic phases.

摘要

在2019年冠状病毒病大流行期间,城市居民的活动参与度和出行行为受到政府限制措施的影响,如全市范围的临时封锁、公共场所关闭以及公共交通停运。基于包括汇总的出行变化报告和住户调查数据在内的多个异构数据源,本文提出了一种机器学习方法,用于动态活动链模式估计,具有更高的可解释性,以检验行为模式调整。基于历史住户调查样本,我们首先建立一个基于计算图的离散选择模型,以估计大流行前的基线出行行程参数。为了进一步从逐日时间序列中捕捉活动链模式的结构偏差,我们在基于效用的可解释嵌套逻辑模型框架内定义了以活动为导向的偏差参数,并通过一个约束优化问题对其进行进一步估计。通过将长短期记忆方法作为可解释模块纳入,以捕捉干预前后的复杂周期性和趋势信息,我们更准确地预测了逐日活动链模式。我们基于公开可用数据集,如美国2017年全国住户出行调查和整个疫情期间的谷歌全球出行数据集,对我们模型的性能进行了检验。我们的模型可以为大流行期间及大流行后阶段的交通规划、政策调整和管理决策提供更多启示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f83b/8418203/d93c928ff90d/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验