Bose Susmita, Bhattacharjee Arjak, Banerjee Dishary, Boccaccini Aldo R, Bandyopadhyay Amit
W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA.
Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen, Germany.
Addit Manuf. 2021 Apr;40. doi: 10.1016/j.addma.2021.101895. Epub 2021 Feb 5.
Calcium phosphate (CaP)-based ceramics are a popular choice for bone-graft applications due to their compositional similarities with bone. Similarly, Bioactive glass (BG) is also common for bone tissue engineering applications due to its excellent biocompatibility and bone binding ability. We report tricalcium phosphate (TCP)-BG (45S5 BG) composite scaffolds using conventional processing and binder jetting-based 3D printing (3DP) technique. We hypothesize that BG's addition in TCP will enhance densification liquid phase sintering and improve mechanical properties. Further, BG addition to TCP should modulate the dissolution kinetics This work's scientific objective is to understand the influence of random designed porosity in TCP-BG ceramics towards variations in compressive strength and biocompatibility. Our findings indicate that a 5 wt % BG in TCP composite shows a compressive strength of 26.7 ± 2.7 MPa for random porosity structures having a total porosity of ~47.9%. The same composition in a designed porosity structure shows a compressive strength of 21.3 ± 2.9 MPa, having a total porosity of ~54.1%. Scaffolds are also tested for their dissolution kinetics and bone cell materials interaction, where TCP-BG compositions show favorable bone cell materials interactions. The addition of BG enhances a flaky hydroxycarbonate apatite (HCA) layer in 8 weeks . Our research shows that the porous TCP- BG scaffolds, fabricated binder jetting method with enhanced mechanical properties and dissolution properties can be utilized in bone graft applications.
基于磷酸钙(CaP)的陶瓷因其与骨的成分相似性,是骨移植应用的热门选择。同样,生物活性玻璃(BG)因其优异的生物相容性和骨结合能力,在骨组织工程应用中也很常见。我们报道了使用传统加工和基于粘结剂喷射的3D打印(3DP)技术制备的磷酸三钙(TCP)-BG(45S5 BG)复合支架。我们假设在TCP中添加BG将增强致密化液相烧结并改善机械性能。此外,在TCP中添加BG应调节溶解动力学。这项工作的科学目标是了解TCP-BG陶瓷中随机设计的孔隙率对压缩强度和生物相容性变化的影响。我们的研究结果表明,对于总孔隙率约为47.9%的随机孔隙结构,TCP复合材料中5 wt%的BG显示出26.7±2.7 MPa的压缩强度。在设计孔隙结构中相同的组成显示出21.3±2.9 MPa的压缩强度,总孔隙率约为54.1%。还对支架的溶解动力学和骨细胞与材料的相互作用进行了测试,其中TCP-BG组合物显示出良好的骨细胞与材料的相互作用。添加BG在8周内增强了片状羟基碳酸磷灰石(HCA)层。我们的研究表明,通过粘结剂喷射法制造的具有增强机械性能和溶解性能的多孔TCP-BG支架可用于骨移植应用。