Suppr超能文献

随机孔隙率和设计孔隙率对3D打印磷酸三钙-生物活性玻璃支架的影响。

Influence of random and designed porosities on 3D printed tricalcium phosphate-bioactive glass scaffolds.

作者信息

Bose Susmita, Bhattacharjee Arjak, Banerjee Dishary, Boccaccini Aldo R, Bandyopadhyay Amit

机构信息

W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA.

Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen, Germany.

出版信息

Addit Manuf. 2021 Apr;40. doi: 10.1016/j.addma.2021.101895. Epub 2021 Feb 5.

Abstract

Calcium phosphate (CaP)-based ceramics are a popular choice for bone-graft applications due to their compositional similarities with bone. Similarly, Bioactive glass (BG) is also common for bone tissue engineering applications due to its excellent biocompatibility and bone binding ability. We report tricalcium phosphate (TCP)-BG (45S5 BG) composite scaffolds using conventional processing and binder jetting-based 3D printing (3DP) technique. We hypothesize that BG's addition in TCP will enhance densification liquid phase sintering and improve mechanical properties. Further, BG addition to TCP should modulate the dissolution kinetics This work's scientific objective is to understand the influence of random designed porosity in TCP-BG ceramics towards variations in compressive strength and biocompatibility. Our findings indicate that a 5 wt % BG in TCP composite shows a compressive strength of 26.7 ± 2.7 MPa for random porosity structures having a total porosity of ~47.9%. The same composition in a designed porosity structure shows a compressive strength of 21.3 ± 2.9 MPa, having a total porosity of ~54.1%. Scaffolds are also tested for their dissolution kinetics and bone cell materials interaction, where TCP-BG compositions show favorable bone cell materials interactions. The addition of BG enhances a flaky hydroxycarbonate apatite (HCA) layer in 8 weeks . Our research shows that the porous TCP- BG scaffolds, fabricated binder jetting method with enhanced mechanical properties and dissolution properties can be utilized in bone graft applications.

摘要

基于磷酸钙(CaP)的陶瓷因其与骨的成分相似性,是骨移植应用的热门选择。同样,生物活性玻璃(BG)因其优异的生物相容性和骨结合能力,在骨组织工程应用中也很常见。我们报道了使用传统加工和基于粘结剂喷射的3D打印(3DP)技术制备的磷酸三钙(TCP)-BG(45S5 BG)复合支架。我们假设在TCP中添加BG将增强致密化液相烧结并改善机械性能。此外,在TCP中添加BG应调节溶解动力学。这项工作的科学目标是了解TCP-BG陶瓷中随机设计的孔隙率对压缩强度和生物相容性变化的影响。我们的研究结果表明,对于总孔隙率约为47.9%的随机孔隙结构,TCP复合材料中5 wt%的BG显示出26.7±2.7 MPa的压缩强度。在设计孔隙结构中相同的组成显示出21.3±2.9 MPa的压缩强度,总孔隙率约为54.1%。还对支架的溶解动力学和骨细胞与材料的相互作用进行了测试,其中TCP-BG组合物显示出良好的骨细胞与材料的相互作用。添加BG在8周内增强了片状羟基碳酸磷灰石(HCA)层。我们的研究表明,通过粘结剂喷射法制造的具有增强机械性能和溶解性能的多孔TCP-BG支架可用于骨移植应用。

相似文献

1
Influence of random and designed porosities on 3D printed tricalcium phosphate-bioactive glass scaffolds.
Addit Manuf. 2021 Apr;40. doi: 10.1016/j.addma.2021.101895. Epub 2021 Feb 5.
2
Hierarchical structures of β-TCP/45S5 bioglass hybrid scaffolds prepared by gelcasting.
J Mech Behav Biomed Mater. 2016 Sep;62:10-23. doi: 10.1016/j.jmbbm.2016.04.028. Epub 2016 Apr 28.
3
3D Powder Printed Bioglass and β-Tricalcium Phosphate Bone Scaffolds.
Materials (Basel). 2017 Dec 22;11(1):13. doi: 10.3390/ma11010013.
4
6
Fabrication and biological characteristics of beta-tricalcium phosphate porous ceramic scaffolds reinforced with calcium phosphate glass.
J Mater Sci Mater Med. 2009 Jan;20(1):351-8. doi: 10.1007/s10856-008-3591-2. Epub 2008 Sep 21.
7
SrO- and MgO-doped microwave sintered 3D printed tricalcium phosphate scaffolds: mechanical properties and in vivo osteogenesis in a rabbit model.
J Biomed Mater Res B Appl Biomater. 2015 Apr;103(3):679-90. doi: 10.1002/jbm.b.33239. Epub 2014 Jul 8.
8
Beta-tricalcium phosphate enhanced mechanical and biological properties of 3D-printed polyhydroxyalkanoates scaffold for bone tissue engineering.
Int J Biol Macromol. 2022 Jun 1;209(Pt A):1553-1561. doi: 10.1016/j.ijbiomac.2022.04.056. Epub 2022 Apr 18.
10
3D printed polycaprolactone/β-tricalcium phosphate/carbon nanotube composite - Physical properties and biocompatibility.
Heliyon. 2024 Feb 20;10(5):e26071. doi: 10.1016/j.heliyon.2024.e26071. eCollection 2024 Mar 15.

引用本文的文献

1
Research Progress and Challenges in 3D Printing of Bioceramics and Bioceramic Matrix Composites.
Biomimetics (Basel). 2025 Jul 1;10(7):428. doi: 10.3390/biomimetics10070428.
3
Enhancing Osteogenesis Differentiation and In Vitro Degradation in Polymer Scaffolds with Spike-like Strontium Carbonate Microrods.
ACS Omega. 2025 Jun 6;10(23):24079-24088. doi: 10.1021/acsomega.4c09683. eCollection 2025 Jun 17.
4
Bioactive Glass Microscaffolds Fabricated by Two-Photon Lithography.
Adv Mater. 2025 Jul;37(29):e2504475. doi: 10.1002/adma.202504475. Epub 2025 Apr 24.
5
Binary Doping of Strontium-Magnesium to Bioactive Glasses to Enhance Antibacterial and Osteogenic Effects.
ACS Omega. 2024 Dec 24;10(1):215-229. doi: 10.1021/acsomega.4c04898. eCollection 2025 Jan 14.
6
Engineering of Bioresorbable Polymers for Tissue Engineering and Drug Delivery Applications.
Adv Healthc Mater. 2024 Dec;13(30):e2401674. doi: 10.1002/adhm.202401674. Epub 2024 Sep 4.
8
Bioactive Glass in Tissue Regeneration: Unveiling Recent Advances in Regenerative Strategies and Applications.
Adv Mater. 2025 Jan;37(2):e2312964. doi: 10.1002/adma.202312964. Epub 2024 Jul 16.
10
Utilization of 3D printing technology in hepatopancreatobiliary surgery.
J Zhejiang Univ Sci B. 2024 Feb 15;25(2):123-134. doi: 10.1631/jzus.B2300175.

本文引用的文献

1
Effects of surface area and topography on 3D printed tricalcium phosphate scaffolds for bone grafting applications.
Addit Manuf. 2021 Mar;39. doi: 10.1016/j.addma.2021.101870. Epub 2021 Jan 26.
2
Collagen as Bioink for Bioprinting: A Comprehensive Review.
Int J Bioprint. 2020 Apr 21;6(3):270. doi: 10.18063/ijb.v6i3.270. eCollection 2020.
3
Bioprinting of Collagen: Considerations, Potentials, and Applications.
Macromol Biosci. 2021 Jan;21(1):e2000280. doi: 10.1002/mabi.202000280. Epub 2020 Oct 19.
4
Enhanced osteogenesis of 3D printed β-TCP scaffolds with Cissus Quadrangularis extract-loaded polydopamine coatings.
J Mech Behav Biomed Mater. 2020 Nov;111:103945. doi: 10.1016/j.jmbbm.2020.103945. Epub 2020 Jul 4.
6
Mechanical properties of bioactive glasses, ceramics, glass-ceramics and composites: State-of-the-art review and future challenges.
Mater Sci Eng C Mater Biol Appl. 2019 Nov;104:109895. doi: 10.1016/j.msec.2019.109895. Epub 2019 Jun 16.
7
Bioactive glass (45S5)-based 3D scaffolds coated with magnesium and zinc-loaded hydroxyapatite nanoparticles for tissue engineering applications.
Colloids Surf B Biointerfaces. 2019 Oct 1;182:110346. doi: 10.1016/j.colsurfb.2019.110346. Epub 2019 Jul 4.
8
Vitamin D Release from Traditionally and Additively Manufactured Tricalcium Phosphate Bone Tissue Engineering Scaffolds.
Ann Biomed Eng. 2020 Mar;48(3):1025-1033. doi: 10.1007/s10439-019-02292-3. Epub 2019 Jun 5.
9
Starch-Hydroxyapatite Composite Bone Scaffold Fabrication Utilizing a Slurry Extrusion-Based Solid Freeform Fabricator.
Addit Manuf. 2018 Dec;24:47-59. doi: 10.1016/j.addma.2018.08.030. Epub 2018 Aug 29.
10
3D Powder Printed Bioglass and β-Tricalcium Phosphate Bone Scaffolds.
Materials (Basel). 2017 Dec 22;11(1):13. doi: 10.3390/ma11010013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验