Suppr超能文献

用于基因组学数据治疗任务的机器学习应用。

Machine learning applications for therapeutic tasks with genomics data.

作者信息

Huang Kexin, Xiao Cao, Glass Lucas M, Critchlow Cathy W, Gibson Greg, Sun Jimeng

机构信息

Department of Computer Science, Stanford University, Stanford, CA 94305, USA.

Amplitude, San Francisco, CA 94105, USA.

出版信息

Patterns (N Y). 2021 Aug 9;2(10):100328. doi: 10.1016/j.patter.2021.100328. eCollection 2021 Oct 8.

Abstract

Thanks to the increasing availability of genomics and other biomedical data, many machine learning algorithms have been proposed for a wide range of therapeutic discovery and development tasks. In this survey, we review the literature on machine learning applications for genomics through the lens of therapeutic development. We investigate the interplay among genomics, compounds, proteins, electronic health records, cellular images, and clinical texts. We identify 22 machine learning in genomics applications that span the whole therapeutics pipeline, from discovering novel targets, personalizing medicine, developing gene-editing tools, all the way to facilitating clinical trials and post-market studies. We also pinpoint seven key challenges in this field with potentials for expansion and impact. This survey examines recent research at the intersection of machine learning, genomics, and therapeutic development.

摘要

由于基因组学和其他生物医学数据的可得性不断提高,人们提出了许多机器学习算法,用于广泛的治疗发现和开发任务。在本次综述中,我们从治疗开发的角度回顾了关于机器学习在基因组学中的应用的文献。我们研究了基因组学、化合物、蛋白质、电子健康记录、细胞图像和临床文本之间的相互作用。我们确定了22种基因组学应用中的机器学习方法,这些方法贯穿了整个治疗流程,从发现新靶点、个性化医疗、开发基因编辑工具,一直到促进临床试验和上市后研究。我们还指出了该领域的七个关键挑战,这些挑战具有扩展和产生影响的潜力。本次综述考察了机器学习、基因组学和治疗开发交叉领域的最新研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b64/8515011/26ee536c8c59/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验