Department of Micro & Nano Electronics, School of Electronics Engineering (SENSE), Vellore Institute of Technology, Vellore, India.
IET Nanobiotechnol. 2021 Jun;15(4):348-357. doi: 10.1049/nbt2.12045. Epub 2021 Mar 15.
In the last decade, carbon-based nanostructures such as buckyball (C ), carbon nanotube (CNT), graphene and three-dimensional (3D) graphene have been identified as promising materials for electronic, electrochemical energy storage (batteries and supercapacitors), optical and sensing applications. Since the discovery of graphene in 2004, scientists have devised mass production techniques and explored graphene as a promising material for a wide range of applications. Most of the electronic and solar cell applications require materials with good electronic conductivity, mobility and finite bandgap. Graphene is a zero bandgap material which prevents it from the mainstream applications. On the other hand, 3D graphene has good electronic conductivity, mobility, bandgap and electrochemical properties. This review article will focus on the synthesis of the 3D graphene, its structure-property relationships, biotechnology and electronic applications and the hidden properties that are yet to be explored fully.
在过去的十年中,碳基纳米结构,如富勒烯(C60)、碳纳米管(CNT)、石墨烯和三维(3D)石墨烯,已被确定为用于电子、电化学储能(电池和超级电容器)、光学和传感应用的有前途的材料。自 2004 年发现石墨烯以来,科学家们已经设计出大规模生产技术,并将石墨烯探索为广泛应用的有前途的材料。大多数电子和太阳能电池应用需要具有良好的电子导电性、迁移率和有限带隙的材料。石墨烯是一种零带隙材料,这使其无法应用于主流领域。另一方面,3D 石墨烯具有良好的电子导电性、迁移率、带隙和电化学性能。本文将重点介绍 3D 石墨烯的合成、结构-性能关系、生物技术和电子应用,以及尚未得到充分探索的隐藏特性。
Recent Pat Nanotechnol. 2012-6-1
Chem Soc Rev. 2013-4-7
J Microbiol Biotechnol. 2015-2
Adv Mater. 2012-8-29
Adv Mater. 2019-1-25
Int J Biol Macromol. 2023-12-31
J Mater Chem B. 2014-9-14
Micromachines (Basel). 2020-1-3
Colloids Surf B Biointerfaces. 2019-11-2
J Nanobiotechnology. 2018-9-22
Nanoscale Res Lett. 2018-9-18
Chem Soc Rev. 2017-7-31