École de Technologie Supérieure, Montreal, Canada.
École de Technologie Supérieure, Montreal, Canada.
Neuroimage. 2020 Jan 1;204:116208. doi: 10.1016/j.neuroimage.2019.116208. Epub 2019 Sep 20.
Neuroimaging studies typically adopt a common feature space for all data, which may obscure aspects of neuroanatomy only observable in subsets of a population, e.g. cortical folding patterns unique to individuals or shared by close relatives. Here, we propose to model individual variability using a distinctive keypoint signature: a set of unique, localized patterns, detected automatically in each image by a generic saliency operator. The similarity of an image pair is then quantified by the proportion of keypoints they share using a novel Jaccard-like measure of set overlap. Experiments demonstrate the keypoint method to be highly efficient and accurate, using a set of 7536 T1-weighted MRIs pooled from four public neuroimaging repositories, including twins, non-twin siblings, and 3334 unique subjects. All same-subject image pairs are identified by a similarity threshold despite confounds including aging and neurodegenerative disease progression. Outliers reveal previously unknown data labeling inconsistencies, demonstrating the usefulness of the keypoint signature as a computational tool for curating large neuroimage datasets.
神经影像学研究通常采用通用的特征空间来处理所有数据,这可能会掩盖仅在人群子集(例如,个体特有的皮质折叠模式或近亲共享的模式)中才能观察到的神经解剖学方面的内容。在这里,我们建议使用独特的关键点特征来对个体变异性进行建模:一组独特的、局部化的模式,通过通用的显著特征算子在每张图像中自动检测到。然后,通过使用新的杰卡德式集合重叠度量来量化图像对之间的相似性,即用它们共享的关键点比例来衡量。实验证明,该关键点方法效率高、准确性高,使用了从四个公共神经影像学存储库(包括双胞胎、非双胞胎兄弟姐妹和 3334 个独特的个体)中汇集的 7536 个 T1 加权 MRI。尽管存在衰老和神经退行性疾病进展等混杂因素,但所有相同受试者的图像对都可以通过相似性阈值来识别。异常值揭示了以前未知的数据标签不一致性,证明了关键点特征作为大型神经影像数据集的策展计算工具的有用性。