文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

从蓟中生物合成的银纳米粒子的抗菌活性和特性。

Antibacterial activity and characteristics of silver nanoparticles biosynthesized from Carduus crispus.

机构信息

Laboratory of Molecular and Cellular Biophysics, Department of Biology, National University of Mongolia, Ulaanbaatar, Mongolia.

出版信息

Sci Rep. 2021 Oct 26;11(1):21047. doi: 10.1038/s41598-021-00520-2.


DOI:10.1038/s41598-021-00520-2
PMID:34702916
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8548519/
Abstract

In recent years' synthesis of metal nanoparticle using plants has been extensively studied and recognized as a non-toxic and efficient method applicable in biomedical field. The aim of this study is to investigate the role of different parts of medical plant Carduus crispus on synthesizing silver nanoparticles and characterize the produced nanoparticle. Our study showed that silver nanoparticles (AgNP) synthesized via whole plant extract exhibited a blue shift in absorption spectra with increased optical density, which correlates to a high yield and small size. Also, the results of zeta potential, X-ray diffraction, photon cross-correlation spectroscopy analysis showed the surface charge of - 54.29 ± 4.96 mV (AgNP-S), - 42.64 ± 3.762 mV (AgNP-F), - 46.02 ± 4.17 mV (AgNP-W), the crystallite size of 36 nm (AgNP-S), 13 nm (AgNP-F), 14 nm (AgNP-W) with face-centered cubic structure and average grain sizes of 145.1 nm, 22.5 nm and 99.6 nm. Another important characteristic, such as elemental composition and constituent capping agent has been determined by energy-dispersive X-ray spectroscopy and Fourier transform infrared. The silver nanoparticles were composed of ~ 80% Ag, ~ 15% K, and ~ 7.5% Ca (or ~ 2.8% P) elements. Moreover, the results of the FTIR measurement suggested that the distinct functional groups present in both AgNP-S and AgNP-F were found in AgNP-W. The atomic force microscopy analysis revealed that AgNP-S, AgNP-F and AgNP-W had sizes of 131 nm, 33 nm and 70 nm respectively. In addition, the biosynthesized silver nanoparticles were evaluated for their cytotoxicity and antibacterial activity. At 17 µg/ml concentration, AgNP-S, AgNP-F and AgNP-W showed very low toxicity on HepG2 cell line but also high antibacterial activity. The silver nanoparticles showed antibacterial activity on both gram-negative bacterium Escherichia coli (5.5 ± 0.2 mm to 6.5 ± 0.3 mm) and gram-positive bacterium Micrococcus luteus (7 ± 0.4 mm to 7.7 ± 0.5 mm). Our study is meaningful as a first observation indicating the possibility of using special plant organs to control the characteristics of nanoparticles.

摘要

近年来,利用植物合成金属纳米粒子的研究已经得到了广泛的关注,并被认为是一种无毒且高效的方法,适用于生物医学领域。本研究旨在探讨药用植物蓟的不同部位在合成银纳米粒子中的作用,并对所合成的纳米粒子进行表征。我们的研究表明,全植物提取物合成的银纳米粒子(AgNP)在吸收光谱中表现出蓝移,吸光度增加,这与高产率和小尺寸相关。此外,通过zeta 电位、X 射线衍射和光子相关光谱分析的结果表明,表面电荷分别为-54.29±4.96 mV(AgNP-S)、-42.64±3.762 mV(AgNP-F)、-46.02±4.17 mV(AgNP-W),结晶尺寸分别为 36 nm(AgNP-S)、13 nm(AgNP-F)、14 nm(AgNP-W),具有面心立方结构,平均粒径分别为 145.1 nm、22.5 nm 和 99.6 nm。通过能谱分析和傅里叶变换红外光谱确定了另一个重要特征,如元素组成和组成的封端剂。银纳米粒子由80%Ag、15%K 和7.5%Ca(或2.8%P)组成。此外,傅里叶变换红外光谱测量的结果表明,AgNP-S 和 AgNP-F 中存在的不同官能团也存在于 AgNP-W 中。原子力显微镜分析表明,AgNP-S、AgNP-F 和 AgNP-W 的粒径分别为 131 nm、33 nm 和 70 nm。此外,还对生物合成的银纳米粒子的细胞毒性和抗菌活性进行了评价。在 17 μg/ml 浓度下,AgNP-S、AgNP-F 和 AgNP-W 对 HepG2 细胞系的毒性非常低,但抗菌活性很高。银纳米粒子对革兰氏阴性菌大肠杆菌(5.5±0.2 mm 至 6.5±0.3 mm)和革兰氏阳性菌藤黄微球菌(7±0.4 mm 至 7.7±0.5 mm)均具有抗菌活性。本研究具有重要意义,因为这是首次观察到使用特殊植物器官来控制纳米粒子特性的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1816/8548519/7fa14a5fb561/41598_2021_520_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1816/8548519/157b0be7e137/41598_2021_520_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1816/8548519/7302fc06d132/41598_2021_520_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1816/8548519/220019d2c60a/41598_2021_520_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1816/8548519/224e582c8a12/41598_2021_520_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1816/8548519/d789928e75e0/41598_2021_520_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1816/8548519/a29ec095c419/41598_2021_520_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1816/8548519/f3fb68612417/41598_2021_520_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1816/8548519/cea5d8e32815/41598_2021_520_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1816/8548519/2416a73bcd78/41598_2021_520_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1816/8548519/7fa14a5fb561/41598_2021_520_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1816/8548519/157b0be7e137/41598_2021_520_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1816/8548519/7302fc06d132/41598_2021_520_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1816/8548519/220019d2c60a/41598_2021_520_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1816/8548519/224e582c8a12/41598_2021_520_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1816/8548519/d789928e75e0/41598_2021_520_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1816/8548519/a29ec095c419/41598_2021_520_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1816/8548519/f3fb68612417/41598_2021_520_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1816/8548519/cea5d8e32815/41598_2021_520_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1816/8548519/2416a73bcd78/41598_2021_520_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1816/8548519/7fa14a5fb561/41598_2021_520_Fig10_HTML.jpg

相似文献

[1]
Antibacterial activity and characteristics of silver nanoparticles biosynthesized from Carduus crispus.

Sci Rep. 2021-10-26

[2]
Green synthesis of silver nanoparticles by Chrysanthemum morifolium Ramat. extract and their application in clinical ultrasound gel.

Int J Nanomedicine. 2013-5-7

[3]
Exploring the potentials of halophilic prokaryotes from a solar saltern for synthesizing nanoparticles: The case of silver and selenium.

PLoS One. 2020-3-4

[4]
Biomedical Potentialities of Taraxacum officinale-based Nanoparticles Biosynthesized Using Methanolic Leaf Extract.

Curr Pharm Biotechnol. 2017

[5]
Tannic acid-mediated green synthesis of antibacterial silver nanoparticles.

Arch Pharm Res. 2016-2-19

[6]
Biosynthesis of silver nanoparticles using leaf extract of Aesculus hippocastanum (horse chestnut): Evaluation of their antibacterial, antioxidant and drug release system activities.

Mater Sci Eng C Mater Biol Appl. 2019-10-30

[7]
Ecofriendly synthesis of silver and gold nanoparticles by Euphrasia officinalis leaf extract and its biomedical applications.

Artif Cells Nanomed Biotechnol. 2017-8-8

[8]
Facile method for the synthesis of silver nanoparticles using 3-hydrazino-isatin derivatives in aqueous methanol and their antibacterial activity.

Int J Nanomedicine. 2014-3-5

[9]
Clinacanthus nutans crude polysaccharide extract as a green platform for microwave-assisted synthesis of silver nanoparticles: Optimization, characterization, and evaluation of bioactivities.

Int J Biol Macromol. 2024-10

[10]
Tuber extract of Arisaema flavum eco-benignly and effectively synthesize silver nanoparticles: Photocatalytic and antibacterial response against multidrug resistant engineered E. coli QH4.

J Photochem Photobiol B. 2019-2-13

引用本文的文献

[1]
Silver nanoparticles as next-generation antimicrobial agents: mechanisms, challenges, and innovations against multidrug-resistant bacteria.

Front Cell Infect Microbiol. 2025-8-14

[2]
Rapid Green Synthesis of Silver Nanoparticles by Reishi and Their Antibacterial Activity and Mechanisms.

J Biomater Nanobiotechnol. 2024-7

[3]
Effects of silver nanoparticles on the physiology, stress, and mineral uptake of banana cultivars and greenhouse.

Front Plant Sci. 2025-8-12

[4]
Biocontrol and Nanotechnology Strategies for Postharvest Disease Management in Fruits and Vegetables: A Comprehensive Review.

Foods. 2025-8-10

[5]
Room temperature green synthesis and time resolved kinetics of formation of xanthan gum stabilised silver nanoparticles with catalytic and antibacterial potential.

Sci Rep. 2025-8-27

[6]
Phyto-synthesis, characterization of silver nanoparticles from mint leaf extract and its evaluation in antimicrobial and pharmacological applications.

BMC Plant Biol. 2025-8-14

[7]
Green synthesis and characterization of bioactive silver nanoparticles from Stachys tibetica.

Sci Rep. 2025-8-13

[8]
Iron oxide/silver-doped iron oxide nanoparticles: facile synthesis, characterization, antibacterial activity, genotoxicity and anticancer evaluation.

Sci Rep. 2025-8-12

[9]
Efficacy of curcumin-synthesized silver nanoparticles on MCF-7 breast cancer cells.

Med Oncol. 2025-6-16

[10]
Phyto-Assisted Synthesis of Silver Nanoparticles (Ag-NPs) Using Delonix elata Extract: Characterization, Antimicrobial, Antioxidant, Anti-Inflammatory, and Photocatalytic Activities.

Mol Biotechnol. 2025-6-9

本文引用的文献

[1]
Green synthesis of antimicrobial silver nanoparticles using aqueous leaf extracts from three Congolese plant species (, and ).

Heliyon. 2020-8-5

[2]
Silver Nanoparticles: Synthesis and Application for Nanomedicine.

Int J Mol Sci. 2019-2-17

[3]
Bactericidal and Cytotoxic Properties of Silver Nanoparticles.

Int J Mol Sci. 2019-1-21

[4]
Silver nanoparticles: An integrated view of green synthesis methods, transformation in the environment, and toxicity.

Ecotoxicol Environ Saf. 2019-1-16

[5]
Alpinia calcarata: potential source for the fabrication of bioactive silver nanoparticles.

Nano Converg. 2018-12-6

[6]
Plant extracts as green reductants for the synthesis of silver nanoparticles: lessons from chemical synthesis.

Dalton Trans. 2018-9-11

[7]
A review on biosynthesis of silver nanoparticles and their biocidal properties.

J Nanobiotechnology. 2018-2-16

[8]
Novel Weed-Extracted Silver Nanoparticles and Their Antibacterial Appraisal against a Rare Bacterium from River and Sewage Treatment Plan.

Nanomaterials (Basel). 2017-12-26

[9]
Green Synthesis of Metallic Nanoparticles via Biological Entities.

Materials (Basel). 2015-10-29

[10]
Natural Antioxidants in Foods and Medicinal Plants: Extraction, Assessment and Resources.

Int J Mol Sci. 2017-1-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索