Laboratory of Molecular and Cellular Biophysics, Department of Biology, National University of Mongolia, Ulaanbaatar, Mongolia.
Sci Rep. 2021 Oct 26;11(1):21047. doi: 10.1038/s41598-021-00520-2.
In recent years' synthesis of metal nanoparticle using plants has been extensively studied and recognized as a non-toxic and efficient method applicable in biomedical field. The aim of this study is to investigate the role of different parts of medical plant Carduus crispus on synthesizing silver nanoparticles and characterize the produced nanoparticle. Our study showed that silver nanoparticles (AgNP) synthesized via whole plant extract exhibited a blue shift in absorption spectra with increased optical density, which correlates to a high yield and small size. Also, the results of zeta potential, X-ray diffraction, photon cross-correlation spectroscopy analysis showed the surface charge of - 54.29 ± 4.96 mV (AgNP-S), - 42.64 ± 3.762 mV (AgNP-F), - 46.02 ± 4.17 mV (AgNP-W), the crystallite size of 36 nm (AgNP-S), 13 nm (AgNP-F), 14 nm (AgNP-W) with face-centered cubic structure and average grain sizes of 145.1 nm, 22.5 nm and 99.6 nm. Another important characteristic, such as elemental composition and constituent capping agent has been determined by energy-dispersive X-ray spectroscopy and Fourier transform infrared. The silver nanoparticles were composed of ~ 80% Ag, ~ 15% K, and ~ 7.5% Ca (or ~ 2.8% P) elements. Moreover, the results of the FTIR measurement suggested that the distinct functional groups present in both AgNP-S and AgNP-F were found in AgNP-W. The atomic force microscopy analysis revealed that AgNP-S, AgNP-F and AgNP-W had sizes of 131 nm, 33 nm and 70 nm respectively. In addition, the biosynthesized silver nanoparticles were evaluated for their cytotoxicity and antibacterial activity. At 17 µg/ml concentration, AgNP-S, AgNP-F and AgNP-W showed very low toxicity on HepG2 cell line but also high antibacterial activity. The silver nanoparticles showed antibacterial activity on both gram-negative bacterium Escherichia coli (5.5 ± 0.2 mm to 6.5 ± 0.3 mm) and gram-positive bacterium Micrococcus luteus (7 ± 0.4 mm to 7.7 ± 0.5 mm). Our study is meaningful as a first observation indicating the possibility of using special plant organs to control the characteristics of nanoparticles.
近年来,利用植物合成金属纳米粒子的研究已经得到了广泛的关注,并被认为是一种无毒且高效的方法,适用于生物医学领域。本研究旨在探讨药用植物蓟的不同部位在合成银纳米粒子中的作用,并对所合成的纳米粒子进行表征。我们的研究表明,全植物提取物合成的银纳米粒子(AgNP)在吸收光谱中表现出蓝移,吸光度增加,这与高产率和小尺寸相关。此外,通过zeta 电位、X 射线衍射和光子相关光谱分析的结果表明,表面电荷分别为-54.29±4.96 mV(AgNP-S)、-42.64±3.762 mV(AgNP-F)、-46.02±4.17 mV(AgNP-W),结晶尺寸分别为 36 nm(AgNP-S)、13 nm(AgNP-F)、14 nm(AgNP-W),具有面心立方结构,平均粒径分别为 145.1 nm、22.5 nm 和 99.6 nm。通过能谱分析和傅里叶变换红外光谱确定了另一个重要特征,如元素组成和组成的封端剂。银纳米粒子由80%Ag、15%K 和7.5%Ca(或2.8%P)组成。此外,傅里叶变换红外光谱测量的结果表明,AgNP-S 和 AgNP-F 中存在的不同官能团也存在于 AgNP-W 中。原子力显微镜分析表明,AgNP-S、AgNP-F 和 AgNP-W 的粒径分别为 131 nm、33 nm 和 70 nm。此外,还对生物合成的银纳米粒子的细胞毒性和抗菌活性进行了评价。在 17 μg/ml 浓度下,AgNP-S、AgNP-F 和 AgNP-W 对 HepG2 细胞系的毒性非常低,但抗菌活性很高。银纳米粒子对革兰氏阴性菌大肠杆菌(5.5±0.2 mm 至 6.5±0.3 mm)和革兰氏阳性菌藤黄微球菌(7±0.4 mm 至 7.7±0.5 mm)均具有抗菌活性。本研究具有重要意义,因为这是首次观察到使用特殊植物器官来控制纳米粒子特性的可能性。
Arch Pharm Res. 2016-2-19
Artif Cells Nanomed Biotechnol. 2017-8-8
Front Cell Infect Microbiol. 2025-8-14
J Biomater Nanobiotechnol. 2024-7
Int J Mol Sci. 2019-2-17
Int J Mol Sci. 2019-1-21
Ecotoxicol Environ Saf. 2019-1-16
Nano Converg. 2018-12-6
J Nanobiotechnology. 2018-2-16
Materials (Basel). 2015-10-29
Int J Mol Sci. 2017-1-5