Suppr超能文献

用于肿瘤检测的对比增强质子射线照相灵敏度极限

Contrast-enhanced proton radiographic sensitivity limits for tumor detection.

作者信息

Sidebottom Rachel B, Allison Jason C, Aulwes Ethan F, Broder Brittany A, Freeman Matthew S, Magnelind Per E, Mariam Fesseha G, Merrill Frank E, Neukirch Levi P, Schurman Tamsen, Sinnis James, Tang Zhaowen, Tupa Dale, Tybo Joshua L, Wilde Carl H, Espy Michelle

机构信息

Los Alamos National Laboratory, Los Alamos, New Mexico, United States.

出版信息

J Med Imaging (Bellingham). 2021 Sep;8(5):053501. doi: 10.1117/1.JMI.8.5.053501. Epub 2021 Oct 23.

Abstract

Proton radiography may guide proton therapy cancer treatments with beam's-eye-view anatomical images and a proton-based estimation of proton stopping power. However, without contrast enhancement, proton radiography will not be able to distinguish tumor from tissue. To provide this contrast, functionalized, high- nanoparticles that specifically target a tumor could be injected into a patient before imaging. We conducted this study to understand the ability of gold, as a high- , biologically compatible tracer, to differentiate tumors from surrounding tissue. Acrylic and gold phantoms simulate a tumor tagged with gold nanoparticles (AuNPs). Calculations correlate a given thickness of gold to levels of tumor AuNP uptake reported in the literature. An identity, , and proton magnifying lens acquired lens-refocused proton radiographs at the 800-MeV LANSCE proton beam. The effects of gold in the phantoms, in terms of percent density change, were observed as changes in measured transmission. Variable areal densities of acrylic modeled the thickness of the human body. A -thick gold strip was discernible within 1 cm of acrylic, an areal density change of 0.2%. Behind 20 cm of acrylic, a gold strip was visible. A 1-cm-diameter tumor tagged with 50-nm AuNPs per cell has an amount of contrast agent embedded within it that is equivalent to a thickness of gold, an areal density change of 0.63% in a tissue thickness of 20 cm, which is expected to be visible in a typical proton radiograph. We indicate that AuNP-enhanced proton radiography might be a feasible technology to provide image-guidance to proton therapy, potentially reducing off-target effects and sparing nearby tissue. These data can be used to develop treatment plans and clinical applications can be derived from the simulations.

摘要

质子射线照相术可以通过束流视角的解剖图像和基于质子的质子阻止本领估计来指导癌症质子治疗。然而,在没有对比度增强的情况下,质子射线照相术将无法区分肿瘤和组织。为了提供这种对比度,可以在成像前将特异性靶向肿瘤的功能化高 纳米颗粒注入患者体内。我们进行这项研究是为了了解金作为一种高 、生物相容性示踪剂区分肿瘤与周围组织的能力。丙烯酸和金模型模拟了用金纳米颗粒(AuNP)标记的肿瘤。计算将给定厚度的金与文献中报道的肿瘤AuNP摄取水平相关联。一个身份、 和质子放大镜在800 MeV的LANSCE质子束下获取了透镜重新聚焦的质子射线照片。观察到模型中黄金在密度百分比变化方面的影响表现为测量透射率的变化。丙烯酸的可变面密度模拟了人体的厚度。在1厘米厚的丙烯酸内可辨别出一条 厚的金条,面密度变化为0.2%。在20厘米厚的丙烯酸后面,可以看到一条 厚的金条。每个细胞用50纳米AuNP标记的直径1厘米的肿瘤内嵌入的造影剂数量相当于 厚度的金,在20厘米厚的组织中面密度变化为0.63%,预计在典型的质子射线照片中可见。我们表明,AuNP增强的质子射线照相术可能是一种可行的技术,可为质子治疗提供图像引导,潜在地减少脱靶效应并保护附近组织。这些数据可用于制定治疗计划,并且可以从模拟中得出临床应用。

相似文献

1
Contrast-enhanced proton radiographic sensitivity limits for tumor detection.
J Med Imaging (Bellingham). 2021 Sep;8(5):053501. doi: 10.1117/1.JMI.8.5.053501. Epub 2021 Oct 23.
2
A TOPAS model for lens-based proton radiography.
Biomed Phys Eng Express. 2023 Oct 26;9(6). doi: 10.1088/2057-1976/ad015b.
3
Gold Nanoparticles by Laser Ablation for X-Ray Imaging and Protontherapy Improvements.
Recent Pat Nanotechnol. 2018 Feb 14;12(1):59-69. doi: 10.2174/1872210511666170609093433.
6
Flat-panel imager energy-dependent proton radiography for a proton pencil-beam scanning system.
Phys Med Biol. 2020 Jul 8;65(14):145001. doi: 10.1088/1361-6560/ab9981.
7
Sensitivity study of proton radiography and comparison with kV and MV x-ray imaging using GEANT4 Monte Carlo simulations.
Phys Med Biol. 2011 Apr 21;56(8):2407-21. doi: 10.1088/0031-9155/56/8/006. Epub 2011 Mar 22.
8
Fast In Situ Image Reconstruction for Proton Radiography.
J Radiat Oncol. 2019 Jun;8(2):185-198. doi: 10.1007/s13566-019-00387-x. Epub 2019 May 25.
10
Analysis of characteristics of images acquired with a prototype clinical proton radiography system.
Med Phys. 2021 May;48(5):2271-2278. doi: 10.1002/mp.14801. Epub 2021 Mar 22.

本文引用的文献

1
Scattering proton CT.
Phys Med Biol. 2020 Nov 17;65(22):225015. doi: 10.1088/1361-6560/abbd18.
2
AGuIX from bench to bedside-Transfer of an ultrasmall theranostic gadolinium-based nanoparticle to clinical medicine.
Br J Radiol. 2019 Jan;92(1093):20180365. doi: 10.1259/bjr.20180365. Epub 2018 Sep 18.
3
Probing the biological obstacles of nanomedicine with gold nanoparticles.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019 May;11(3):e1542. doi: 10.1002/wnan.1542. Epub 2018 Aug 7.
4
National Cancer Institute Workshop on Proton Therapy for Children: Considerations Regarding Brainstem Injury.
Int J Radiat Oncol Biol Phys. 2018 May 1;101(1):152-168. doi: 10.1016/j.ijrobp.2018.01.013.
5
Nanoparticle-mediated cryosurgery for tumor therapy.
Nanomedicine. 2018 Feb;14(2):493-506. doi: 10.1016/j.nano.2017.11.018. Epub 2017 Dec 18.
6
Proton therapy for pediatric head and neck malignancies.
Pediatr Blood Cancer. 2018 Feb;65(2). doi: 10.1002/pbc.26858. Epub 2017 Oct 23.
7
Proton therapy for head and neck cancer: expanding the therapeutic window.
Lancet Oncol. 2017 May;18(5):e254-e265. doi: 10.1016/S1470-2045(17)30179-1. Epub 2017 Apr 26.
8
Proton therapy - Present and future.
Adv Drug Deliv Rev. 2017 Jan 15;109:26-44. doi: 10.1016/j.addr.2016.11.006. Epub 2016 Dec 3.
9
Branched Gold Nanoparticle Coating of Clostridium novyi-NT Spores for CT-Guided Intratumoral Injection.
Small. 2017 Feb;13(5). doi: 10.1002/smll.201602722. Epub 2016 Nov 15.
10
Gold nanoparticles for applications in cancer radiotherapy: Mechanisms and recent advancements.
Adv Drug Deliv Rev. 2017 Jan 15;109:84-101. doi: 10.1016/j.addr.2015.12.012. Epub 2015 Dec 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验