Suppr超能文献

一种用于重症监护病房药物剂量确定与监测的深度确定性策略梯度方法。

A Deep Deterministic Policy Gradient Approach to Medication Dosing and Surveillance in the ICU.

作者信息

Lin Rongmei, Stanley Matthew D, Ghassemi Mohammad M, Nemati Shamim

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:4927-4931. doi: 10.1109/EMBC.2018.8513203.

Abstract

Medication dosing in a critical care environment is a complex task that involves close monitoring of relevant physiologic and laboratory biomarkers and corresponding sequential adjustment of the prescribed dose. Misdosing of medications with narrow therapeutic windows (such as intravenous [IV] heparin) can result in preventable adverse events, decrease quality of care and increase cost. Therefore, a robust recommendation system can help clinicians by providing individualized dosing suggestions or corrections to existing protocols. We present a clinician-in-the-loop framework for adjusting IV heparin dose using deep reinforcement learning (RL). Our main objectives were to learn a new IV heparin dosing policy based on the multi-dimensional features of patients, and evaluate the effectiveness of the learned policy in the presence of other confounding factors that may contribute to heparin-related side effects. The data used in the experiments included 2598 intensive care patients from the publicly available MIMIC database and 2310 patients from the Emory University clinical data warehouse. Experimental results suggested that the distance from RL policy had a statistically significant association with anticoagulant complications $(p< 0.05)$, after adjusting for the effects of confounding factors.

摘要

重症监护环境中的药物剂量确定是一项复杂的任务,需要密切监测相关的生理和实验室生物标志物,并对规定剂量进行相应的连续调整。治疗窗较窄的药物(如静脉注射[IV]肝素)用药错误可能导致可预防的不良事件,降低护理质量并增加成本。因此,一个强大的推荐系统可以通过提供个性化的给药建议或对现有方案进行修正来帮助临床医生。我们提出了一个使用深度强化学习(RL)来调整静脉注射肝素剂量的临床医生参与框架。我们的主要目标是基于患者的多维特征学习一种新的静脉注射肝素给药策略,并在存在可能导致肝素相关副作用的其他混杂因素的情况下评估所学策略的有效性。实验中使用的数据包括来自公开可用的MIMIC数据库的2598名重症监护患者和来自埃默里大学临床数据仓库的2310名患者。实验结果表明,在调整混杂因素的影响后,与强化学习策略的距离与抗凝并发症具有统计学显著关联(p<0.05)。

相似文献

1
A Deep Deterministic Policy Gradient Approach to Medication Dosing and Surveillance in the ICU.
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:4927-4931. doi: 10.1109/EMBC.2018.8513203.
2
Optimal medication dosing from suboptimal clinical examples: a deep reinforcement learning approach.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:2978-2981. doi: 10.1109/EMBC.2016.7591355.
3
Inverse reinforcement learning for intelligent mechanical ventilation and sedative dosing in intensive care units.
BMC Med Inform Decis Mak. 2019 Apr 9;19(Suppl 2):57. doi: 10.1186/s12911-019-0763-6.
4
A dosing strategy model of deep deterministic policy gradient algorithm for sepsis patients.
BMC Med Inform Decis Mak. 2023 May 4;23(1):81. doi: 10.1186/s12911-023-02175-7.
5
Patient-Specific Sedation Management via Deep Reinforcement Learning.
Front Digit Health. 2021 Mar 31;3:608893. doi: 10.3389/fdgth.2021.608893. eCollection 2021.
6
An evaluation of empiric vs. nomogram-based dosing of heparin in an intensive care unit.
Crit Care Med. 1997 Sep;25(9):1534-8. doi: 10.1097/00003246-199709000-00021.
8
Heparin-induced thrombocytopenia in intensive care patients.
Crit Care Med. 2007 Apr;35(4):1165-76. doi: 10.1097/01.CCM.0000259538.02375.A5.
9
Argatroban dosage requirements and outcomes in intensive care versus non-intensive care patients.
Pharmacotherapy. 2009 Sep;29(9):1073-81. doi: 10.1592/phco.29.9.1073.
10
Deep Reinforcement Learning for Optimal Critical Care Pain Management with Morphine using Dueling Double-Deep Q Networks.
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:3960-3963. doi: 10.1109/EMBC.2019.8857295.

引用本文的文献

1
AI-Driven Tacrolimus Dosing in Transplant Care: Cohort Study.
JMIR AI. 2025 Sep 2;4:e67302. doi: 10.2196/67302.
2
Anti-factor Xa during unfractionated heparin therapy in critically ill patients: Development of prediction models using machine learning.
Digit Health. 2025 Apr 27;11:20552076241305957. doi: 10.1177/20552076241305957. eCollection 2025 Jan-Dec.
4
Deep Attention Q-Network for Personalized Treatment Recommendation.
IEEE Int Conf Data Min Workshops. 2023 Dec;2023:329-337. doi: 10.1109/icdmw60847.2023.00048. Epub 2024 Feb 6.
5
Predicting Therapeutic Response to Unfractionated Heparin Therapy: Machine Learning Approach.
Interact J Med Res. 2022 Sep 19;11(2):e34533. doi: 10.2196/34533.
6
Patient-Specific Sedation Management via Deep Reinforcement Learning.
Front Digit Health. 2021 Mar 31;3:608893. doi: 10.3389/fdgth.2021.608893. eCollection 2021.
8
Reinforcement Learning for Clinical Decision Support in Critical Care: Comprehensive Review.
J Med Internet Res. 2020 Jul 20;22(7):e18477. doi: 10.2196/18477.

本文引用的文献

1
Optimal medication dosing from suboptimal clinical examples: a deep reinforcement learning approach.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:2978-2981. doi: 10.1109/EMBC.2016.7591355.
2
Electronic health records to facilitate clinical research.
Clin Res Cardiol. 2017 Jan;106(1):1-9. doi: 10.1007/s00392-016-1025-6. Epub 2016 Aug 24.
3
MIMIC-III, a freely accessible critical care database.
Sci Data. 2016 May 24;3:160035. doi: 10.1038/sdata.2016.35.
4
A data-driven approach to optimized medication dosing: a focus on heparin.
Intensive Care Med. 2014 Sep;40(9):1332-9. doi: 10.1007/s00134-014-3406-5. Epub 2014 Aug 5.
5
Healthcare outcomes assessed with observational study designs compared with those assessed in randomized trials.
Cochrane Database Syst Rev. 2014 Apr 29;2014(4):MR000034. doi: 10.1002/14651858.MR000034.pub2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验