Lin Rongmei, Stanley Matthew D, Ghassemi Mohammad M, Nemati Shamim
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:4927-4931. doi: 10.1109/EMBC.2018.8513203.
Medication dosing in a critical care environment is a complex task that involves close monitoring of relevant physiologic and laboratory biomarkers and corresponding sequential adjustment of the prescribed dose. Misdosing of medications with narrow therapeutic windows (such as intravenous [IV] heparin) can result in preventable adverse events, decrease quality of care and increase cost. Therefore, a robust recommendation system can help clinicians by providing individualized dosing suggestions or corrections to existing protocols. We present a clinician-in-the-loop framework for adjusting IV heparin dose using deep reinforcement learning (RL). Our main objectives were to learn a new IV heparin dosing policy based on the multi-dimensional features of patients, and evaluate the effectiveness of the learned policy in the presence of other confounding factors that may contribute to heparin-related side effects. The data used in the experiments included 2598 intensive care patients from the publicly available MIMIC database and 2310 patients from the Emory University clinical data warehouse. Experimental results suggested that the distance from RL policy had a statistically significant association with anticoagulant complications $(p< 0.05)$, after adjusting for the effects of confounding factors.
重症监护环境中的药物剂量确定是一项复杂的任务,需要密切监测相关的生理和实验室生物标志物,并对规定剂量进行相应的连续调整。治疗窗较窄的药物(如静脉注射[IV]肝素)用药错误可能导致可预防的不良事件,降低护理质量并增加成本。因此,一个强大的推荐系统可以通过提供个性化的给药建议或对现有方案进行修正来帮助临床医生。我们提出了一个使用深度强化学习(RL)来调整静脉注射肝素剂量的临床医生参与框架。我们的主要目标是基于患者的多维特征学习一种新的静脉注射肝素给药策略,并在存在可能导致肝素相关副作用的其他混杂因素的情况下评估所学策略的有效性。实验中使用的数据包括来自公开可用的MIMIC数据库的2598名重症监护患者和来自埃默里大学临床数据仓库的2310名患者。实验结果表明,在调整混杂因素的影响后,与强化学习策略的距离与抗凝并发症具有统计学显著关联(p<0.05)。