Suppr超能文献

利用光片层照显微镜实现非侵入式高分辨率生物膜成像的光学可视微流道。

Optically Accessible Microfluidic Flow Channels for Noninvasive High-Resolution Biofilm Imaging Using Lattice Light Sheet Microscopy.

机构信息

Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States.

School of Materials Science and Engineering, Northeastern University, Shenyang, Liaoning 110819, China.

出版信息

J Phys Chem B. 2021 Nov 11;125(44):12187-12196. doi: 10.1021/acs.jpcb.1c07759. Epub 2021 Oct 29.

Abstract

Imaging platforms that enable long-term, high-resolution imaging of biofilms are required to study cellular level dynamics within bacterial biofilms. By combining high spatial and temporal resolution and low phototoxicity, lattice light sheet microscopy (LLSM) has made critical contributions to the study of cellular dynamics. However, the power of LLSM has not yet been leveraged for biofilm research because the open-on-top imaging geometry using water-immersion objective lenses is not compatible with living bacterial specimens; bacterial growth on the microscope's objective lenses makes long-term time-lapse imaging impossible and raises considerable safety concerns for microscope users. To make LLSM compatible with pathogenic bacterial specimens, we developed hermetically sealed, but optically accessible, microfluidic flow channels that can sustain bacterial biofilm growth for multiple days under precisely controllable physical and chemical conditions. To generate a liquid- and gas-tight seal, we glued a thin polymer film across a 3D-printed channel, where the top wall had been omitted. We achieved negligible optical aberrations by using polymer films that precisely match the refractive index of water. Bacteria do not adhere to the polymer film itself, so that the polymer window provides unobstructed optical access to the channel interior. Inside the flow channels, biofilms can be grown on arbitrary, even nontransparent, surfaces. By integrating this flow channel with LLSM, we were able to record the growth of MR-1 biofilms over several days at cellular resolution without any observable phototoxicity or photodamage.

摘要

需要能够长期、高分辨率成像生物膜的成像平台,以便研究细菌生物膜内的细胞水平动态。通过结合高空间和时间分辨率以及低光毒性,晶格光片显微镜(LLSM)为细胞动态研究做出了重要贡献。然而,由于使用水浸物镜的开放式顶部成像几何形状与活细菌标本不兼容,LLSM 的强大功能尚未在生物膜研究中得到利用;细菌在显微镜物镜上的生长使得长时间延时成像成为不可能,并给显微镜使用者带来了相当大的安全隐患。为了使 LLSM 与致病性细菌标本兼容,我们开发了密封但光学可访问的微流控通道,这些通道可以在精确可控的物理和化学条件下维持细菌生物膜生长多日。为了产生液体和气体密封,我们在 3D 打印通道上粘贴了一层薄聚合物膜,其中省略了顶壁。我们使用与水的折射率精确匹配的聚合物膜来实现可忽略不计的光学像差。细菌不会附着在聚合物膜本身,因此聚合物窗口为通道内部提供了无障碍的光学通道。在流动通道内部,可以在任意表面上(甚至是不透明表面)生长生物膜。通过将这种流道与 LLSM 集成,我们能够在没有任何可观察到的光毒性或光损伤的情况下,以细胞分辨率记录 MR-1 生物膜的生长数天。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/507b/8592114/b9129a45badb/jp1c07759_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验