Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA.
Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.
Cell Syst. 2020 May 20;10(5):433-444.e5. doi: 10.1016/j.cels.2020.04.006.
Lattice light-sheet microscopy provides large amounts of high-dimensional, high-spatiotemporal resolution imaging data of cell surface receptors across the 3D surface of live cells, but user-friendly analysis pipelines are lacking. Here, we introduce lattice light-sheet microscopy multi-dimensional analyses (LaMDA), an end-to-end pipeline comprised of publicly available software packages that combines machine learning, dimensionality reduction, and diffusion maps to analyze surface receptor dynamics and classify cellular signaling states without the need for complex biochemical measurements or other prior information. We use LaMDA to analyze images of T-cell receptor (TCR) microclusters on the surface of live primary T cells under resting and stimulated conditions. We observe global spatial and temporal changes of TCRs across the 3D cell surface, accurately differentiate stimulated cells from unstimulated cells, precisely predict attenuated T-cell signaling after CD4 and CD28 receptor blockades, and reliably discriminate between structurally similar TCR ligands. All instructions needed to implement LaMDA are included in this paper.
晶格层光显微镜提供了大量的高维、高时空分辨率的活细胞表面受体成像数据,这些数据来自细胞 3D 表面,但缺乏用户友好的分析流程。在这里,我们引入了晶格层光显微镜多维分析(LaMDA),这是一个端到端的管道,包含了多个公开的软件包,它结合了机器学习、降维和扩散映射来分析表面受体动力学,并在不需要复杂的生化测量或其他先验信息的情况下对细胞信号状态进行分类。我们使用 LaMDA 来分析静止和刺激条件下活原代 T 细胞表面 T 细胞受体(TCR)微簇的图像。我们观察到 TCR 在整个 3D 细胞表面的全局空间和时间变化,准确地区分了刺激细胞和未刺激细胞,精确预测了 CD4 和 CD28 受体阻断后减弱的 T 细胞信号,并可靠地区分了结构相似的 TCR 配体。本文中包含了实现 LaMDA 所需的所有指令。