Giersch Gabrielle E W, Charkoudian Nisha, Morrissey Margaret C, Butler Cody R, Colburn Abigail T, Caldwell Aaron R, Kavouras Stavros A, Casa Douglas J
Thermal and Mountain Medicine Division, United States Army Research Institute for Environmental Medicine, Natick, MA, United States.
Oak Ridge Institute for Science and Education, Belcamp, MD, United States.
Front Sports Act Living. 2021 Oct 14;3:722305. doi: 10.3389/fspor.2021.722305. eCollection 2021.
The purpose of this study was to investigate the relationship between volume regulatory biomarkers and the estrogen to progesterone ratio (E:P) prior to and following varying methods and degrees of dehydration. Ten women (20 ± 1 year, 56.98 ± 7.25 kg, 164 ± 6 cm, 39.59 ± 2.96 mL•kg•min) completed four intermittent exercise trials (1.5 h, 33.8 ± 1.3°C, 49.5 ± 4.3% relative humidity). Testing took place in two hydration conditions, dehydrated via 24-h fluid restriction (Dehy, USG > 1.020) and euhydrated (Euhy, USG ≤ 1.020), and in two phases of the menstrual cycle, the late follicular phase (days 10-13) and midluteal phase (days 18-22). Change in body mass (%BMΔ), serum copeptin concentration, and plasma osmolality (P) were assessed before and after both dehydration stimuli (24-h fluid restriction and exercise heat stress). Serum estrogen and progesterone were analyzed pre-exercise only. Estrogen concentration did not differ between phases or hydration conditions. Progesterone was significantly elevated in luteal compared to follicular in both hydration conditions (Dehy-follicular: 1.156 ± 0.31, luteal: 5.190 ± 1.56 ng•mL, < 0.05; Euhy-follicular: 0.915 ± 0.18, luteal: 4.498 ± 1.38 ng·mL, < 0.05). As expected, E:P was significantly greater in the follicular phase compared to luteal in both hydration conditions (Dehy-F:138.94 ± 89.59, L: 64.22 ± 84.55, < 0.01; Euhy-F:158.13 ± 70.15, L: 50.98 ± 39.69, < 0.01, [all •10]). Copeptin concentration was increased following 24-h fluid restriction and exercise heat stress (mean change: 18 ± 9.4, < 0.01). We observed a possible relationship of lower E:P and higher copeptin concentration following 24-h fluid restriction ( = -0.35, = 0.054). While these results did not reach the level of statistical significance, these data suggest that the differing E:P ratio may alter fluid volume regulation during low levels of dehydration but have no apparent impact after dehydrating exercise in the heat.
本研究的目的是调查在采用不同方法和不同程度脱水之前和之后,容量调节生物标志物与雌激素与孕酮比值(E:P)之间的关系。十名女性(年龄20±1岁,体重56.98±7.25千克,身高164±6厘米,静息代谢率39.59±2.96毫升•千克•分钟)完成了四项间歇性运动试验(1.5小时,温度33.8±1.3°C,相对湿度49.5±4.3%)。测试在两种水合状态下进行,通过24小时液体限制使其脱水(脱水状态,尿比重>1.020)和正常水合状态(正常水合状态,尿比重≤1.020),并且在月经周期的两个阶段进行,即卵泡晚期(第10 - 13天)和黄体中期(第18 - 22天)。在两种脱水刺激(24小时液体限制和运动热应激)前后,评估体重变化(%BMΔ)、血清 copeptin 浓度和血浆渗透压(P)。仅在运动前分析血清雌激素和孕酮。雌激素浓度在各阶段或水合状态之间没有差异。在两种水合状态下,黄体期的孕酮水平均显著高于卵泡期(脱水状态 - 卵泡期:1.156±0.31,黄体期:5.190±1.56纳克•毫升,P<0.05;正常水合状态 - 卵泡期:0.915±0.18,黄体期:4.498±1.38纳克·毫升,P<0.05)。正如预期的那样,在两种水合状态下,卵泡期的E:P均显著高于黄体期(脱水状态 - 卵泡期:138.94±89.59,黄体期:64.22±84.55,P<0.01;正常水合状态 - 卵泡期:158.13±70.15,黄体期:50.98±39.69,P<0.01,[均×10])。24小时液体限制和运动热应激后,copeptin 浓度升高(平均变化:18±9.4,P<0.01)。我们观察到在24小时液体限制后,E:P较低与 copeptin 浓度较高之间可能存在关联(r = -0.35,P = 0.054)。虽然这些结果未达到统计学显著水平,但这些数据表明,不同的E:P比值可能在轻度脱水期间改变液体容量调节,但在热环境中进行脱水运动后没有明显影响。