Suppr超能文献

预测人乳头瘤病毒(HPV)疫苗在埃塞俄比亚、印度、尼日利亚和巴基斯坦的影响:一项比较建模研究。

Projections of human papillomavirus (HPV) vaccination impact in Ethiopia, India, Nigeria and Pakistan: a comparative modelling study.

机构信息

Center for Health Decision Science, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA

Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK.

出版信息

BMJ Glob Health. 2021 Nov;6(11). doi: 10.1136/bmjgh-2021-006940.

Abstract

INTRODUCTION

Cervical cancer is the second most common cancer among women in Ethiopia, India, Nigeria and Pakistan. Our study objective was to assess similarities and differences in vaccine-impact projections through comparative modelling analysis by independently estimating the potential health impact of human papillomavirus (HPV) vaccination.

METHODS

Using two widely published models (Harvard and Papillomavirus Rapid Interface for Modelling and Economics (PRIME)) to estimate HPV vaccination impact, we simulated a vaccination scenario of 90% annual coverage among 10 cohorts of 9-year-old girls from 2021 to 2030 in Ethiopia, India, Nigeria and Pakistan. We estimated potential health impact in terms of cervical cancer cases, deaths and disability-adjusted life years averted among vaccinated cohorts from the time of vaccination until 2100. We harmonised the two models by standardising input data to comparatively estimate HPV vaccination impact.

RESULTS

Prior to harmonising model assumptions, the range between PRIME and Harvard models for number of cervical cancer cases averted by HPV vaccination was: 262 000 to 2 70 000 in Ethiopia; 1 640 000 to 1 970 000 in India; 330 000 to 3 36 000 in Nigeria and 111 000 to 1 33 000 in Pakistan. When harmonising model assumptions, alignment on HPV type distribution significantly narrowed differences in vaccine-impact estimates.

CONCLUSION

Despite model differences, the Harvard and PRIME models yielded similar vaccine-impact estimates. The main differences in estimates are due to variation in interpretation around data on cervical cancer attribution to HPV-16/18. As countries make progress towards WHO targets for cervical cancer elimination, continued explorations of underlying differences in model inputs, assumptions and results when examining cervical cancer prevention policy will be critical.

摘要

简介

在埃塞俄比亚、印度、尼日利亚和巴基斯坦,宫颈癌是女性中第二大常见癌症。我们的研究目的是通过独立估计人乳头瘤病毒(HPV)疫苗的潜在健康影响,通过比较建模分析来评估疫苗影响预测的相似性和差异。

方法

我们使用两种广泛发表的模型(哈佛模型和人乳头瘤病毒快速接口建模和经济模型(PRIME))来估计 HPV 疫苗的影响,模拟了 2021 年至 2030 年期间,埃塞俄比亚、印度、尼日利亚和巴基斯坦每年有 10 个 9 岁女孩组接受 90%的年度疫苗接种率的接种情景。我们根据从接种疫苗开始到 2100 年接种疫苗的队列中避免的宫颈癌病例、死亡和残疾调整生命年来估计潜在的健康影响。我们通过标准化输入数据来协调两种模型,以比较估计 HPV 疫苗接种的影响。

结果

在协调模型假设之前,PRIME 和哈佛模型对 HPV 疫苗接种可预防的宫颈癌病例数的预测范围为:埃塞俄比亚为 262,000 至 2,700,000;印度为 1,640,000 至 1,970,000;尼日利亚为 330,000 至 3,360,000;巴基斯坦为 111,000 至 1,330,000。在协调模型假设后,HPV 型分布的一致性显著缩小了疫苗影响估计的差异。

结论

尽管模型存在差异,但哈佛和 PRIME 模型得出了相似的疫苗影响估计。估计值的主要差异是由于对 HPV-16/18 导致宫颈癌归因的数据的解释存在差异。随着各国在实现世界卫生组织消除宫颈癌目标方面取得进展,在审查宫颈癌预防政策时,继续探索模型输入、假设和结果方面的潜在差异将至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/393c/8562528/9f4ad7f8b0ec/bmjgh-2021-006940f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验