Suppr超能文献

自然语言处理系统在临床研究资格筛选中的应用:系统评价

A systematic review on natural language processing systems for eligibility prescreening in clinical research.

机构信息

School of Nursing, Columbia University, New York, New York, USA.

Department of Neurology, Columbia University, New York, New York, USA.

出版信息

J Am Med Inform Assoc. 2021 Dec 28;29(1):197-206. doi: 10.1093/jamia/ocab228.

Abstract

OBJECTIVE

We conducted a systematic review to assess the effect of natural language processing (NLP) systems in improving the accuracy and efficiency of eligibility prescreening during the clinical research recruitment process.

MATERIALS AND METHODS

Guided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) standards of quality for reporting systematic reviews, a protocol for study eligibility was developed a priori and registered in the PROSPERO database. Using predetermined inclusion criteria, studies published from database inception through February 2021 were identified from 5 databases. The Joanna Briggs Institute Critical Appraisal Checklist for Quasi-experimental Studies was adapted to determine the study quality and the risk of bias of the included articles.

RESULTS

Eleven studies representing 8 unique NLP systems met the inclusion criteria. These studies demonstrated moderate study quality and exhibited heterogeneity in the study design, setting, and intervention type. All 11 studies evaluated the NLP system's performance for identifying eligible participants; 7 studies evaluated the system's impact on time efficiency; 4 studies evaluated the system's impact on workload; and 2 studies evaluated the system's impact on recruitment.

DISCUSSION

NLP systems in clinical research eligibility prescreening are an understudied but promising field that requires further research to assess its impact on real-world adoption. Future studies should be centered on continuing to develop and evaluate relevant NLP systems to improve enrollment into clinical studies.

CONCLUSION

Understanding the role of NLP systems in improving eligibility prescreening is critical to the advancement of clinical research recruitment.

摘要

目的

我们进行了一项系统评价,以评估自然语言处理(NLP)系统在提高临床研究招募过程中资格筛选准确性和效率方面的效果。

材料与方法

根据系统评价和荟萃分析的首选报告项目(PRISMA)质量标准制定了研究资格的方案,并在 PROSPERO 数据库中进行了预先注册。使用预定的纳入标准,从 5 个数据库中确定了从数据库开始到 2021 年 2 月发表的研究。采用 Joanna Briggs 研究所的准实验研究批判性评估清单来确定纳入文章的研究质量和偏倚风险。

结果

有 11 项研究代表 8 个独特的 NLP 系统符合纳入标准。这些研究的研究质量为中等,研究设计、设置和干预类型存在异质性。所有 11 项研究都评估了 NLP 系统识别合格参与者的性能;7 项研究评估了系统对时间效率的影响;4 项研究评估了系统对工作量的影响;2 项研究评估了系统对招募的影响。

讨论

临床研究资格筛选中的 NLP 系统是一个研究不足但有前途的领域,需要进一步研究来评估其在实际应用中的影响。未来的研究应集中于继续开发和评估相关的 NLP 系统,以提高临床试验的入组率。

结论

了解 NLP 系统在改善资格筛选中的作用对于临床研究招募的进展至关重要。

相似文献

1
A systematic review on natural language processing systems for eligibility prescreening in clinical research.
J Am Med Inform Assoc. 2021 Dec 28;29(1):197-206. doi: 10.1093/jamia/ocab228.
6
Machine Learning and Natural Language Processing in Mental Health: Systematic Review.
J Med Internet Res. 2021 May 4;23(5):e15708. doi: 10.2196/15708.
7
Natural language processing for clinical notes in dentistry: A systematic review.
J Biomed Inform. 2023 Feb;138:104282. doi: 10.1016/j.jbi.2023.104282. Epub 2023 Jan 7.

引用本文的文献

1
Artificial intelligence in cardiovascular practice.
Nurse Pract. 2025 May 1;50(5):13-24. doi: 10.1097/01.NPR.0000000000000312. Epub 2025 Apr 24.
2
Artificial intelligence in cardiovascular practice.
JAAPA. 2025 May 1;38(5):21-30. doi: 10.1097/01.JAA.0000000000000204. Epub 2025 Apr 24.
3
AI Thinking: a framework for rethinking artificial intelligence in practice.
R Soc Open Sci. 2025 Jan 8;12(1):241482. doi: 10.1098/rsos.241482. eCollection 2025 Jan.
5
Clinical researchers' insights on key data for eligibility screening in clinical studies.
J Clin Transl Sci. 2024 Oct 16;8(1):e167. doi: 10.1017/cts.2024.617. eCollection 2024.
6
Implementation of a rule-based algorithm to find patients eligible for cancer clinical trials.
JAMIA Open. 2024 Nov 18;7(4):ooae131. doi: 10.1093/jamiaopen/ooae131. eCollection 2024 Dec.
7
Artificial Intelligence in Cardiovascular Clinical Trials.
J Am Coll Cardiol. 2024 Nov 12;84(20):2051-2062. doi: 10.1016/j.jacc.2024.08.069.
9
How Artificial Intelligence Will Transform Clinical Care, Research, and Trials for Inflammatory Bowel Disease.
Clin Gastroenterol Hepatol. 2025 Feb;23(3):428-439.e4. doi: 10.1016/j.cgh.2024.05.048. Epub 2024 Jul 9.

本文引用的文献

2
Evaluation of an artificial intelligence clinical trial matching system in Australian lung cancer patients.
JAMIA Open. 2020 May 1;3(2):209-215. doi: 10.1093/jamiaopen/ooaa002. eCollection 2020 Jul.
3
Matching patients to clinical trials using semantically enriched document representation.
J Biomed Inform. 2020 May;105:103406. doi: 10.1016/j.jbi.2020.103406. Epub 2020 Mar 10.
4
Natural Language Processing for Mimicking Clinical Trial Recruitment in Critical Care: A Semi-Automated Simulation Based on the LeoPARDS Trial.
IEEE J Biomed Health Inform. 2020 Oct;24(10):2950-2959. doi: 10.1109/JBHI.2020.2977925. Epub 2020 Mar 9.
6
7
Cohort selection for clinical trials using deep learning models.
J Am Med Inform Assoc. 2019 Nov 1;26(11):1181-1188. doi: 10.1093/jamia/ocz139.
8
Automatic trial eligibility surveillance based on unstructured clinical data.
Int J Med Inform. 2019 Sep;129:13-19. doi: 10.1016/j.ijmedinf.2019.05.018. Epub 2019 May 23.
10
Artificial Intelligence for Clinical Trial Design.
Trends Pharmacol Sci. 2019 Aug;40(8):577-591. doi: 10.1016/j.tips.2019.05.005. Epub 2019 Jul 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验