The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, China.
The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, China;
Proc Natl Acad Sci U S A. 2021 Nov 9;118(45). doi: 10.1073/pnas.2113324118.
Macromolecular function commonly involves rapidly reversible alterations in three-dimensional structure (conformation). To allow these essential conformational changes, macromolecules must possess higher order structures that are appropriately balanced between rigidity and flexibility. Because of the low stabilization free energies (marginal stabilities) of macromolecule conformations, temperature changes have strong effects on conformation and, thereby, on function. As is well known for proteins, during evolution, temperature-adaptive changes in sequence foster retention of optimal marginal stability at a species' normal physiological temperatures. Here, we extend this type of analysis to messenger RNAs (mRNAs), a class of macromolecules for which the stability-lability balance has not been elucidated. We employ in silico methods to determine secondary structures and estimate changes in free energy of folding (ΔG) for 25 orthologous mRNAs that encode the enzyme cytosolic malate dehydrogenase in marine mollusks with adaptation temperatures spanning an almost 60 °C range. The change in free energy that occurs during formation of the ensemble of mRNA secondary structures is significantly correlated with adaptation temperature: ΔG values are all negative and their absolute values increase with adaptation temperature. A principal mechanism underlying these adaptations is a significant increase in synonymous guanine + cytosine substitutions with increasing temperature. These findings open up an avenue of exploration in molecular evolution and raise interesting questions about the interaction between temperature-adaptive changes in mRNA sequence and in the proteins they encode.
大分子的功能通常涉及三维结构(构象)的快速可逆变化。为了允许这些基本的构象变化,大分子必须具有适当平衡刚性和柔性的高级结构。由于大分子构象的稳定自由能(边缘稳定性)较低,温度变化对构象有很强的影响,从而对功能有很强的影响。正如众所周知的蛋白质一样,在进化过程中,序列的温度适应性变化促进了在物种正常生理温度下保留最佳边缘稳定性。在这里,我们将这种类型的分析扩展到信使 RNA(mRNA),这是一类尚未阐明稳定性-灵活性平衡的大分子。我们采用计算机模拟方法来确定 25 个直系同源 mRNA 的二级结构,并估计折叠自由能变化(ΔG),这些 mRNA 编码海洋软体动物细胞溶质苹果酸脱氢酶,适应温度跨越近 60°C 的范围。在 mRNA 二级结构的集合形成过程中发生的自由能变化与适应温度显著相关:ΔG 值均为负值,其绝对值随适应温度的升高而增加。这些适应的主要机制是随着温度的升高,同义鸟嘌呤+胞嘧啶取代的显著增加。这些发现为分子进化开辟了一个探索途径,并提出了关于 mRNA 序列和它们编码的蛋白质之间温度适应性变化相互作用的有趣问题。