Suppr超能文献

通过生物信息学分析与机器学习相结合的方法鉴定溃疡性结肠炎患者的诊断特征。

Identification of diagnostic signatures in ulcerative colitis patients via bioinformatic analysis integrated with machine learning.

机构信息

Xinjiang Medical University, Urumqi, 830001, Xinjiang Uygur Autonomous Region, China.

Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91, Tianchi Road, Urumqi, 830001, Xinjiang Uygur Autonomous Region, China.

出版信息

Hum Cell. 2022 Jan;35(1):179-188. doi: 10.1007/s13577-021-00641-w. Epub 2021 Nov 3.

Abstract

Ulcerative colitis (UC) is an immune-related disorder with enhanced prevalence globally. Early diagnosis is critical for the effective treatment of UC. However, it still lacks specific diagnostic signatures. The aim of our study was to explore efficient signatures and construct the diagnostic model for UC. Microarray data of GSE87473 and GSE48634, which were obtained from tissue biopsy samples, were downloaded from the Gene Expression Omnibus (GEO), and differently expressed genes (DEGs), GO, and KEGG analyses were performed. We constructed the PPI network via STRING database. The immune infiltration of the samples was evaluated using CIBERSORT methods combined with the LM22 feature matrix. The logistic regression model was constructed, with the expression of selected genes as the predictor variable, and the UC occurrence as the responsive variable. As a result, a total of 126 DEGs between the UC patients and normal counterparts were identified. The GO and KEGG analysis revealed that multiple biological processes, such as antimicrobial humoral immune response mediated by antimicrobial peptide and IL-17 signaling pathway, were enriched. The infiltration of eight immune cell types (B cells naive, Dendritic.cells.activated, Macrophages.M0, Macrophages.M2, Mast.cells.resting, Neutrophils, Plasma.cells, and T.cells.follicular.helper) was significantly different between patients with UC and normal counterparts. The top 50 most significant DEGs were selected for the construction of the PPI network. The average AUC of the logistic regression model in the fivefold cross-validation was 0.8497 in the training set, GSE87473. The AUC of another independent verification set of GSE48634 from the GEO database was 0.7208. In conclusion, we identified potential hub genes, including REG3A, REG1A, DEFA6, REG1B, and DEFA5, which might be significantly associated with UC progression. The logistic regression model based on the five genes could reliably diagnose UC patients.

摘要

溃疡性结肠炎(UC)是一种与免疫相关的疾病,在全球范围内的患病率有所增加。早期诊断对于 UC 的有效治疗至关重要。然而,目前仍然缺乏特异性的诊断标志物。本研究旨在探索有效的标志物并构建 UC 的诊断模型。从组织活检样本中获得的 GSE87473 和 GSE48634 的微阵列数据从基因表达综合数据库(GEO)中下载,并进行差异表达基因(DEG)、GO 和 KEGG 分析。我们通过 STRING 数据库构建了 PPI 网络。使用 CIBERSORT 方法结合 LM22 特征矩阵评估样本的免疫浸润情况。构建逻辑回归模型,以选定基因的表达作为预测变量,以 UC 发生作为响应变量。结果,在 UC 患者和正常对照之间共鉴定出 126 个 DEG。GO 和 KEGG 分析表明,多个生物学过程(如抗菌肽介导的抗菌体液免疫反应和 IL-17 信号通路)得到了富集。与正常对照相比,UC 患者存在 8 种免疫细胞类型(B 细胞初始、激活的树突状细胞、M0 巨噬细胞、M2 巨噬细胞、静止的肥大细胞、中性粒细胞、浆细胞和滤泡辅助性 T 细胞)的浸润存在显著差异。在 5 折交叉验证中,来自 GEO 数据库的 GSE87473 训练集中逻辑回归模型的平均 AUC 为 0.8497。来自 GEO 数据库的另一个独立验证集 GSE48634 的 AUC 为 0.7208。总之,我们鉴定出了一些潜在的关键基因,包括 REG3A、REG1A、DEFA6、REG1B 和 DEFA5,它们可能与 UC 的进展显著相关。基于这 5 个基因的逻辑回归模型可以可靠地诊断 UC 患者。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验