Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA; Stanford ChEM-H: Chemistry, Engineering and Medicine for Human Health, Stanford University, Stanford, CA 94305, USA.
Cell Rep. 2021 Nov 2;37(5):109930. doi: 10.1016/j.celrep.2021.109930.
Mechanistic insights into the role of the human microbiome in the predisposition to and treatment of disease are limited by the lack of methods to precisely add or remove microbial strains or genes from complex communities. Here, we demonstrate that engineered bacteriophage M13 can be used to deliver DNA to Escherichia coli within the mouse gastrointestinal (GI) tract. Delivery of a programmable exogenous CRISPR-Cas9 system enables the strain-specific depletion of fluorescently marked isogenic strains during competitive colonization and genomic deletions that encompass the target gene in mice colonized with a single strain. Multiple mechanisms allow E. coli to escape targeting, including loss of the CRISPR array or even the entire CRISPR-Cas9 system. These results provide a robust and experimentally tractable platform for microbiome editing, a foundation for the refinement of this approach to increase targeting efficiency, and a proof of concept for the extension to other phage-bacterial pairs of interest.
在人类微生物组在疾病易感性和治疗中的作用方面的机制研究受到限制,因为缺乏精确地向复杂群落中添加或去除微生物菌株或基因的方法。在这里,我们证明了工程噬菌体 M13 可用于将 DNA 递送至小鼠胃肠道 (GI) 中的大肠杆菌。可编程的外源 CRISPR-Cas9 系统的递送可在竞争定植期间特异性耗尽荧光标记的同基因菌株,并且在定植有单个菌株的小鼠中可进行基因组缺失,其中包含目标基因。多种机制允许大肠杆菌逃避靶向,包括 CRISPR 基因座的丢失,甚至是整个 CRISPR-Cas9 系统的丢失。这些结果为微生物组编辑提供了一个强大且易于实验的平台,为改进这种方法以提高靶向效率奠定了基础,并为扩展到其他感兴趣的噬菌体-细菌对提供了概念验证。