Lin Lili, Cao Jiaying, Du Anqiang, An Qiuli, Chen Xiaomin, Yuan Shuangshuang, Batool Wajjiha, Shabbir Ammarah, Zhang Dongmei, Wang Zonghua, Norvienyeku Justice
State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.
Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou, China.
Front Plant Sci. 2021 Oct 18;12:748120. doi: 10.3389/fpls.2021.748120. eCollection 2021.
The eukaryotic translation initiation factor 3 (eIF3) complex consists of essential and non-essential sub-complexes. Non-essential eIF3 complex subunits, such as eIF3e, eIF3j, eIF3k, and eIF3l, modulate stress tolerance and enhance the lifespan of and . However, there is limited knowledge of the role of the non-essential eIF3 sub-complex in the pathophysiological development of plant fungal pathogens. Here, we deployed genetic and biochemical techniques to explore the influence of a hypothetical protein containing eIF3k domain in () on reproduction, hyphae morphogenesis, stress tolerance, and pathogenesis. Also, the targeted disruption of suppressed vegetative growth and asexual sporulation in ΔO strains significantly. We demonstrated that promotes the initiation and development of the rice blast disease by positively regulating the mobilization and degradation of glycogen, appressorium integrity, host penetration, and colonization during host-pathogen interaction. For the first time, we demonstrated that the eIF3k subunit supports the survival of the blast fungus by suppressing vegetative growth and possibly regulating the conversions and utilization of stored cellular energy reserves under starvation conditions. We also observed that the deletion of accelerated ribosomal RNA (rRNA) generation in the ΔO strains with a corresponding increase in total protein output. In summary, this study unravels the pathophysiological significance of eIF3k filamentous fungi. The findings also underscored the need to systematically evaluate the individual subunits of the non-essential eIF3 sub-complex during host-pathogen interaction. Further studies are required to unravel the influence of synergetic coordination between translation and transcriptional regulatory machinery on the pathogenesis of filamentous fungi pathogens.
真核生物翻译起始因子3(eIF3)复合物由必需和非必需亚复合物组成。非必需的eIF3复合物亚基,如eIF3e、eIF3j、eIF3k和eIF3l,可调节胁迫耐受性并延长……的寿命。然而,关于非必需eIF3亚复合物在植物真菌病原体病理生理发育中的作用,我们了解得还很有限。在此,我们运用遗传和生化技术,探究稻瘟病菌(Magnaporthe oryzae)中一个含有eIF3k结构域的假定蛋白对其繁殖、菌丝形态发生、胁迫耐受性及致病性的影响。此外,对MoEIF3K的靶向破坏显著抑制了ΔO菌株的营养生长和无性孢子形成。我们证明,MoEIF3K通过在宿主 - 病原体相互作用过程中正向调节糖原的动员和降解、附着胞完整性、宿主穿透及定殖,促进稻瘟病的起始和发展。我们首次证明,eIF3k亚基通过抑制营养生长并可能在饥饿条件下调节细胞内储存能量储备的转化和利用,来支持稻瘟病菌的存活。我们还观察到,在ΔO菌株中删除MoEIF3K会加速核糖体RNA(rRNA)的产生,同时总蛋白产量相应增加。总之,本研究揭示了eIF3k在丝状真菌中的病理生理意义。这些发现还强调了在宿主 - 病原体相互作用过程中系统评估非必需eIF3亚复合物各个亚基的必要性。还需要进一步研究来揭示翻译和转录调控机制之间的协同协调对丝状真菌病原体致病性的影响。