Suppr超能文献

基于突变特征的克隆分解为突变过程提供了新的见解。

Clone decomposition based on mutation signatures provides novel insights into mutational processes.

作者信息

Matsutani Taro, Hamada Michiaki

机构信息

Graduate School of Advanced Science and Engineering, Waseda University, 55N-06-10, 3-4-1, Okubo Shinjuku-ku, Tokyo 169-8555, Japan.

出版信息

NAR Genom Bioinform. 2021 Nov 1;3(4):lqab093. doi: 10.1093/nargab/lqab093. eCollection 2021 Dec.

Abstract

Intra-tumor heterogeneity is a phenomenon in which mutation profiles differ from cell to cell within the same tumor and is observed in almost all tumors. Understanding intra-tumor heterogeneity is essential from the clinical perspective. Numerous methods have been developed to predict this phenomenon based on variant allele frequency. Among the methods, CloneSig models the variant allele frequency and mutation signatures simultaneously and provides an accurate clone decomposition. However, this method has limitations in terms of clone number selection and modeling. We propose SigTracer, a novel hierarchical Bayesian approach for analyzing intra-tumor heterogeneity based on mutation signatures to tackle these issues. We show that SigTracer predicts more reasonable clone decompositions than the existing methods against artificial data that mimic cancer genomes. We applied SigTracer to whole-genome sequences of blood cancer samples. The results were consistent with past findings that single base substitutions caused by a specific signature (previously reported as SBS9) related to the activation-induced cytidine deaminase intensively lie within immunoglobulin-coding regions for chronic lymphocytic leukemia samples. Furthermore, we showed that this signature mutates regions responsible for cell-cell adhesion. Accurate assignments of mutations to signatures by SigTracer can provide novel insights into signature origins and mutational processes.

摘要

肿瘤内异质性是指在同一肿瘤内不同细胞的突变谱存在差异的现象,几乎在所有肿瘤中都能观察到。从临床角度来看,了解肿瘤内异质性至关重要。基于变异等位基因频率,已经开发出许多方法来预测这种现象。在这些方法中,CloneSig同时对变异等位基因频率和突变特征进行建模,并提供准确的克隆分解。然而,该方法在克隆数量选择和建模方面存在局限性。我们提出了SigTracer,一种基于突变特征分析肿瘤内异质性的新型分层贝叶斯方法,以解决这些问题。我们表明,与模拟癌症基因组的人工数据相比,SigTracer比现有方法能预测更合理的克隆分解。我们将SigTracer应用于血癌样本的全基因组序列。结果与过去的研究结果一致,即由与激活诱导的胞苷脱氨酶相关的特定特征(先前报道为SBS9)引起的单碱基替换在慢性淋巴细胞白血病样本的免疫球蛋白编码区域内密集存在。此外,我们表明该特征会使负责细胞间粘附的区域发生突变。SigTracer对突变特征的准确分配可以为特征起源和突变过程提供新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1ae/8559167/3276c91e0933/lqab093fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验