Suppr超能文献

推断结构变异癌细胞分数。

Inferring structural variant cancer cell fraction.

机构信息

Department of Surgery, Division of Urology, Royal Melbourne Hospital and University of Melbourne, Parkville, VIC, 3050, Australia.

The Epworth Prostate Centre, Epworth Hospital, Richmond, VIC, 3121, Australia.

出版信息

Nat Commun. 2020 Feb 5;11(1):730. doi: 10.1038/s41467-020-14351-8.

Abstract

We present SVclone, a computational method for inferring the cancer cell fraction of structural variant (SV) breakpoints from whole-genome sequencing data. SVclone accurately determines the variant allele frequencies of both SV breakends, then simultaneously estimates the cancer cell fraction and SV copy number. We assess performance using in silico mixtures of real samples, at known proportions, created from two clonal metastases from the same patient. We find that SVclone's performance is comparable to single-nucleotide variant-based methods, despite having an order of magnitude fewer data points. As part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) consortium, which aggregated whole-genome sequencing data from 2658 cancers across 38 tumour types, we use SVclone to reveal a subset of liver, ovarian and pancreatic cancers with subclonally enriched copy-number neutral rearrangements that show decreased overall survival. SVclone enables improved characterisation of SV intra-tumour heterogeneity.

摘要

我们提出了 SVclone,这是一种从全基因组测序数据推断结构变异 (SV) 断点的癌细胞分数的计算方法。SVclone 准确地确定了 SV 断点的两个变体等位基因频率,然后同时估计了癌细胞分数和 SV 拷贝数。我们使用来自同一患者的两个克隆转移的真实样本的已知比例的模拟混合物来评估性能。我们发现,尽管 SVclone 的数据点数量少了一个数量级,但它的性能与基于单核苷酸变体的方法相当。作为泛癌全基因组分析 (PCAWG) 联盟的一部分,该联盟聚合了来自 38 种肿瘤类型的 2658 种癌症的全基因组测序数据,我们使用 SVclone 揭示了一组具有亚克隆富集拷贝数中性重排的肝癌、卵巢癌和胰腺癌,这些重排与整体生存率降低有关。SVclone 能够更好地描述 SV 肿瘤内异质性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f18/7002525/41d698fddf43/41467_2020_14351_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验