Suppr超能文献

用于多相小分子活化的计算和机器学习方法的进展

Progress in Computational and Machine-Learning Methods for Heterogeneous Small-Molecule Activation.

作者信息

Gu Geun Ho, Choi Changhyeok, Lee Yeunhee, Situmorang Andres B, Noh Juhwan, Kim Yong-Hyun, Jung Yousung

机构信息

Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.

Department of Physics and Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.

出版信息

Adv Mater. 2020 Sep;32(35):e1907865. doi: 10.1002/adma.201907865. Epub 2020 Mar 20.

Abstract

The chemical conversion of small molecules such as H , H O, O , N , CO , and CH to energy and chemicals is critical for a sustainable energy future. However, the high chemical stability of these molecules poses grand challenges to the practical implementation of these processes. In this regard, computational approaches such as density functional theory, microkinetic modeling, data science, and machine learning have guided the rational design of catalysts by elucidating mechanistic insights, identifying active sites, and predicting catalytic activity. Here, the theory and methodologies for heterogeneous catalysis and their applications for small-molecule activation are reviewed. An overview of fundamental theory and key computational methods for designing catalysts, including the emerging data science techniques in particular, is given. Applications of these methods for finding efficient heterogeneous catalysts for the activation of the aforementioned small molecules are then surveyed. Finally, promising directions of the computational catalysis field for further outlooks are discussed, focusing on the challenges and opportunities for new methods.

摘要

将诸如H₂、H₂O、O₂、N₂、CO₂和CH₄等小分子化学转化为能量和化学品对于可持续能源的未来至关重要。然而,这些分子的高化学稳定性给这些过程的实际实施带来了巨大挑战。在这方面,诸如密度泛函理论、微观动力学建模、数据科学和机器学习等计算方法通过阐明机理见解、识别活性位点和预测催化活性,指导了催化剂的合理设计。在此,综述了多相催化的理论和方法及其在小分子活化中的应用。给出了设计催化剂的基础理论和关键计算方法的概述,尤其包括新兴的数据科学技术。然后考察了这些方法在寻找用于活化上述小分子的高效多相催化剂方面的应用。最后,讨论了计算催化领域未来发展的有前景的方向,重点关注新方法面临的挑战和机遇。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验