Suppr超能文献

纳米碳材料和碳化物在神经活动传感和调控方面的新兴方法。

Emerging approaches for sensing and modulating neural activity enabled by nanocarbons and carbides.

机构信息

Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States; Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, United States; Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, United States.

Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, United States; Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, United States; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, United States.

出版信息

Curr Opin Biotechnol. 2021 Dec;72:76-85. doi: 10.1016/j.copbio.2021.10.007. Epub 2021 Oct 29.

Abstract

Devices that can record or modulate neural activity are essential tools in clinical diagnostics and monitoring, basic research, and consumer electronics. Realizing stable functional interfaces between manmade electronics and biological tissues is a longstanding challenge that requires device and material innovations to meet stringent safety and longevity requirements and to improve functionality. Compared to conventional materials, nanocarbons and carbides offer a number of specific advantages for neuroelectronics that can enable advances in functionality and performance. Here, we review the latest emerging trends in neuroelectronic interfaces based on nanocarbons and carbides, with a specific emphasis on technologies developed for use in vivo. We highlight specific applications where the ability to tune fundamental material properties at the nanoscale enables interfaces that can safely and precisely interact with neural circuits at unprecedented spatial and temporal scales, ranging from single synapses to the whole human body.

摘要

能够记录或调节神经活动的设备是临床诊断和监测、基础研究和消费电子产品中必不可少的工具。实现人造电子设备与生物组织之间稳定的功能接口是一个长期存在的挑战,需要通过设备和材料创新来满足严格的安全性和耐久性要求,并提高功能。与传统材料相比,纳米碳材料和碳化物为神经电子学提供了许多特定的优势,可实现功能和性能的提升。在这里,我们综述了基于纳米碳材料和碳化物的神经电子接口的最新新兴趋势,特别强调了为体内应用开发的技术。我们重点介绍了一些特定的应用,其中在纳米尺度上调整基本材料特性的能力使接口能够以空前的时空尺度安全且精确地与神经回路相互作用,范围从单个突触到整个人体。

相似文献

2
Organic Neuroelectronics: From Neural Interfaces to Neuroprosthetics.有机神经电子学:从神经接口到神经假体
Adv Mater. 2022 Nov;34(45):e2201864. doi: 10.1002/adma.202201864. Epub 2022 Oct 10.
3
Advanced materials for implantable neuroelectronics.用于植入式神经电子学的先进材料。
MRS Bull. 2023 May;48(5):475-483. doi: 10.1557/s43577-023-00540-5. Epub 2023 May 24.
5
Advanced Materials and Devices for Bioresorbable Electronics.可吸收电子学用的先进材料与器件。
Acc Chem Res. 2018 May 15;51(5):988-998. doi: 10.1021/acs.accounts.7b00548. Epub 2018 Apr 17.
7
Flexible Electronics toward Wearable Sensing.柔性电子学:走向可穿戴传感
Acc Chem Res. 2019 Mar 19;52(3):523-533. doi: 10.1021/acs.accounts.8b00500. Epub 2019 Feb 15.
8
Two-Dimensional TiC MXene for High-Resolution Neural Interfaces.二维 TiC MXene 用于高分辨率神经接口。
ACS Nano. 2018 Oct 23;12(10):10419-10429. doi: 10.1021/acsnano.8b06014. Epub 2018 Sep 12.
9
Functionalized Organic Thin Film Transistors for Biosensing.用于生物传感的功能化有机薄膜晶体管。
Acc Chem Res. 2019 Feb 19;52(2):277-287. doi: 10.1021/acs.accounts.8b00448. Epub 2019 Jan 8.

引用本文的文献

本文引用的文献

1
Carbon Nanotube Fibers for Neural Recording and Stimulation.用于神经记录与刺激的碳纳米管纤维
ACS Appl Bio Mater. 2020 Sep 21;3(9):6478-6487. doi: 10.1021/acsabm.0c00861. Epub 2020 Aug 31.
2
3D Diamond Electrode Array for High-Acuity Stimulation in Neural Tissue.用于神经组织高分辨率刺激的3D金刚石电极阵列
ACS Appl Bio Mater. 2020 Mar 16;3(3):1544-1552. doi: 10.1021/acsabm.9b01165. Epub 2020 Feb 19.
4
TiCT MXene Flakes for Optical Control of Neuronal Electrical Activity.TiCT MXene 薄片用于光学控制神经元电活动。
ACS Nano. 2021 Sep 28;15(9):14662-14671. doi: 10.1021/acsnano.1c04431. Epub 2021 Aug 25.
10
Recent Advances in In Vivo Neurochemical Monitoring.体内神经化学监测的最新进展
Micromachines (Basel). 2021 Feb 18;12(2):208. doi: 10.3390/mi12020208.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验