Chen Jiaochen, Cai Zhennao, Chen Huiling, Chen Xiaowei, Escorcia-Gutierrez José, Mansour Romany F, Ragab Mahmoud
College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035 China.
Department of Rheumatology and Immunology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 China.
J Bionic Eng. 2023 May 3:1-36. doi: 10.1007/s42235-023-00365-7.
Lupus Nephritis (LN) is a significant risk factor for morbidity and mortality in systemic lupus erythematosus, and nephropathology is still the gold standard for diagnosing LN. To assist pathologists in evaluating histopathological images of LN, a 2D Rényi entropy multi-threshold image segmentation method is proposed in this research to apply to LN images. This method is based on an improved Cuckoo Search (CS) algorithm that introduces a Diffusion Mechanism (DM) and an Adaptive β-Hill Climbing (AβHC) strategy called the DMCS algorithm. The DMCS algorithm is tested on 30 benchmark functions of the IEEE CEC2017 dataset. In addition, the DMCS-based multi-threshold image segmentation method is also used to segment renal pathological images. Experimental results show that adding these two strategies improves the DMCS algorithm's ability to find the optimal solution. According to the three image quality evaluation metrics: PSNR, FSIM, and SSIM, the proposed image segmentation method performs well in image segmentation experiments. Our research shows that the DMCS algorithm is a helpful image segmentation method for renal pathological images.
狼疮性肾炎(LN)是系统性红斑狼疮发病和死亡的重要危险因素,而肾病理学仍是诊断LN的金标准。为协助病理学家评估LN的组织病理学图像,本研究提出一种二维雷尼熵多阈值图像分割方法应用于LN图像。该方法基于一种改进的布谷鸟搜索(CS)算法,引入了扩散机制(DM)和自适应β-爬山(AβHC)策略,称为DMCS算法。DMCS算法在IEEE CEC2017数据集的30个基准函数上进行了测试。此外,基于DMCS的多阈值图像分割方法也用于分割肾脏病理图像。实验结果表明,添加这两种策略提高了DMCS算法找到最优解的能力。根据峰值信噪比(PSNR)、特征相似性指数(FSIM)和结构相似性指数(SSIM)这三个图像质量评估指标,所提出的图像分割方法在图像分割实验中表现良好。我们的研究表明,DMCS算法是一种有助于分割肾脏病理图像的图像分割方法。