Suppr超能文献

分析在线健康论坛中与 COVID-19 相关的身心障碍:一项自然语言处理研究。

Analysis of mental and physical disorders associated with COVID-19 in online health forums: a natural language processing study.

机构信息

Department of Psychological Medicine, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK

South London and Maudsley NHS Foundation Trust, London, UK.

出版信息

BMJ Open. 2021 Nov 5;11(11):e056601. doi: 10.1136/bmjopen-2021-056601.

Abstract

OBJECTIVES

Online health forums provide rich and untapped real-time data on population health. Through novel data extraction and natural language processing (NLP) techniques, we characterise the evolution of mental and physical health concerns relating to the COVID-19 pandemic among online health forum users.

SETTING AND DESIGN

We obtained data from three leading online health forums: HealthBoards, Inspire and HealthUnlocked, from the period 1 January 2020 to 31 May 2020. Using NLP, we analysed the content of posts related to COVID-19.

PRIMARY OUTCOME MEASURES

(1) Proportion of forum posts containing COVID-19 keywords; (2) proportion of forum users making their very first post about COVID-19; (3) proportion of COVID-19-related posts containing content related to physical and mental health comorbidities.

RESULTS

Data from 739 434 posts created by 53 134 unique users were analysed. A total of 35 581 posts (4.8%) contained a COVID-19 keyword. Posts discussing COVID-19 and related comorbid disorders spiked in early March to mid-March around the time of global implementation of lockdowns prompting a large number of users to post on online health forums for the first time. Over a quarter of COVID-19-related thread titles mentioned a physical or mental health comorbidity.

CONCLUSIONS

We demonstrate that it is feasible to characterise the content of online health forum user posts regarding COVID-19 and measure changes over time. The pandemic and corresponding public response has had a significant impact on posters' queries regarding mental health. Social media data sources such as online health forums can be harnessed to strengthen population-level mental health surveillance.

摘要

目的

在线健康论坛提供了丰富且未开发的实时人口健康数据。通过新颖的数据提取和自然语言处理 (NLP) 技术,我们描述了在线健康论坛用户与 COVID-19 大流行相关的心理健康和身体健康问题的演变。

设置和设计

我们从三个领先的在线健康论坛(HealthBoards、Inspire 和 HealthUnlocked)获取了 2020 年 1 月 1 日至 2020 年 5 月 31 日的数据。我们使用 NLP 分析了与 COVID-19 相关的帖子内容。

主要结果衡量指标

(1)包含 COVID-19 关键字的论坛帖子比例;(2)首次发布 COVID-19 相关帖子的论坛用户比例;(3)与 COVID-19 相关的帖子中包含身体和心理健康合并症相关内容的比例。

结果

分析了来自 53134 位唯一用户的 739434 个帖子的数据。共有 35581 个帖子(4.8%)包含 COVID-19 关键字。在全球实施封锁期间,大约在 3 月初至 3 月中旬,有关 COVID-19 和相关合并症的帖子数量激增,促使大量用户首次在在线健康论坛上发布帖子。超过四分之一的 COVID-19 相关主题标题提到了身体或心理健康合并症。

结论

我们证明了对在线健康论坛用户关于 COVID-19 的帖子内容进行特征描述并衡量随时间变化是可行的。大流行和相应的公众反应对海报查询心理健康产生了重大影响。社交媒体数据源(如在线健康论坛)可用于加强人群心理健康监测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24af/8573296/cb7d8a7007d0/bmjopen-2021-056601f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验