Suppr超能文献

一种使用可穿戴惯性传感器测量全天自然运动行为的非接触式方法。

A Contactless Method for Measuring Full-Day, Naturalistic Motor Behavior Using Wearable Inertial Sensors.

作者信息

Franchak John M, Scott Vanessa, Luo Chuan

机构信息

Perception, Action, and Development Laboratory, Department of Psychology, University of California, Riverside, Riverside, CA, United States.

出版信息

Front Psychol. 2021 Oct 22;12:701343. doi: 10.3389/fpsyg.2021.701343. eCollection 2021.

Abstract

How can researchers best measure infants' motor experiences in the home? Body position-whether infants are held, supine, prone, sitting, or upright-is an important developmental experience. However, the standard way of measuring infant body position, video recording by an experimenter in the home, can only capture short instances, may bias measurements, and conflicts with physical distancing guidelines resulting from the COVID-19 pandemic. Here, we introduce and validate an alternative method that uses machine learning algorithms to classify infants' body position from a set of wearable inertial sensors. A laboratory study of 15 infants demonstrated that the method was sufficiently accurate to measure individual differences in the time that infants spent in each body position. Two case studies showed the feasibility of applying this method to testing infants in the home using a contactless equipment drop-off procedure.

摘要

研究人员如何才能最好地测量婴儿在家中的运动体验?身体姿势——婴儿是被抱着、仰卧、俯卧、坐着还是直立——是一种重要的发育体验。然而,测量婴儿身体姿势的标准方法,即由实验者在家中进行视频记录,只能捕捉到短暂的瞬间,可能会使测量产生偏差,并且与新冠疫情导致的物理距离指导原则相冲突。在此,我们介绍并验证了一种替代方法,该方法使用机器学习算法从一组可穿戴惯性传感器中对婴儿的身体姿势进行分类。一项针对15名婴儿的实验室研究表明,该方法足够准确,能够测量婴儿在每种身体姿势下所花费时间的个体差异。两项案例研究展示了使用非接触式设备投递程序将此方法应用于在家中测试婴儿的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d253/8570382/cdc275ba84e7/fpsyg-12-701343-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验