Suppr超能文献

使用可穿戴式心电图传感器和卷积神经网络进行心肺并发症的早期检测及训练监测。

Early detection of cardiorespiratory complications and training monitoring using wearable ECG sensors and CNN.

作者信息

Lu HongYuan, Feng XinMiao, Zhang Jing

机构信息

Sport Coaching College, Beijing Sport University, Beijing, 100084, China.

Department of Cardiology, Zhejiang Greentown Cardiovascular Hospital, Hangzhou, 310012, China.

出版信息

BMC Med Inform Decis Mak. 2024 Jul 16;24(1):194. doi: 10.1186/s12911-024-02599-9.

Abstract

This research study demonstrates an efficient scheme for early detection of cardiorespiratory complications in pandemics by Utilizing Wearable Electrocardiogram (ECG) sensors for pattern generation and Convolution Neural Networks (CNN) for decision analytics. In health-related outbreaks, timely and early diagnosis of such complications is conclusive in reducing mortality rates and alleviating the burden on healthcare facilities. Existing methods rely on clinical assessments, medical history reviews, and hospital-based monitoring, which are valuable but have limitations in terms of accessibility, scalability, and timeliness, particularly during pandemics. The proposed scheme commences by deploying wearable ECG sensors on the patient's body. These sensors collect data by continuously monitoring the cardiac activity and respiratory patterns of the patient. The collected raw data is then transmitted securely in a wireless manner to a centralized server and stored in a database. Subsequently, the stored data is assessed using a preprocessing process which extracts relevant and important features like heart rate variability and respiratory rate. The preprocessed data is then used as input into the CNN model for the classification of normal and abnormal cardiorespiratory patterns. To achieve high accuracy in abnormality detection the CNN model is trained on labeled data with optimized parameters. The performance of the proposed scheme is evaluated and gauged using different scenarios, which shows a robust performance in detecting abnormal cardiorespiratory patterns with a sensitivity of 95% and specificity of 92%. Prominent observations, which highlight the potential for early interventions include subtle changes in heart rate variability and preceding respiratory distress. These findings show the significance of wearable ECG technology in improving pandemic management strategies and informing public health policies, which enhances preparedness and resilience in the face of emerging health threats.

摘要

本研究展示了一种高效方案,通过利用可穿戴心电图(ECG)传感器生成模式,并利用卷积神经网络(CNN)进行决策分析,来早期检测大流行中的心肺并发症。在与健康相关的疫情爆发中,及时和早期诊断此类并发症对于降低死亡率和减轻医疗机构负担具有决定性意义。现有方法依赖于临床评估、病史回顾和基于医院的监测,这些方法很有价值,但在可及性、可扩展性和及时性方面存在局限性,尤其是在大流行期间。所提出的方案首先在患者身体上部署可穿戴ECG传感器。这些传感器通过持续监测患者的心脏活动和呼吸模式来收集数据。然后,收集到的原始数据以无线方式安全传输到中央服务器并存储在数据库中。随后,使用预处理过程对存储的数据进行评估,该过程提取诸如心率变异性和呼吸频率等相关且重要的特征。预处理后的数据随后用作CNN模型的输入,用于对正常和异常心肺模式进行分类。为了在异常检测中实现高精度,CNN模型在具有优化参数的标记数据上进行训练。使用不同场景对所提出方案的性能进行评估和衡量,结果表明该方案在检测异常心肺模式方面具有强大性能,灵敏度为95%,特异性为92%。突出的观察结果强调了早期干预的潜力,包括心率变异性的细微变化和先前的呼吸窘迫。这些发现表明可穿戴ECG技术在改善大流行管理策略和为公共卫生政策提供信息方面的重要性,这增强了面对新出现的健康威胁时的准备和恢复能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7735/11250964/28c4da9b720b/12911_2024_2599_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验