Research Group EPR Spectroscopy, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
Department of Chemistry, Georg August University of Göttingen, Tammannstr. 4, Göttingen, Germany.
J Magn Reson. 2021 Dec;333:107091. doi: 10.1016/j.jmr.2021.107091. Epub 2021 Oct 18.
Pulsed F ENDOR spectroscopy provides a selective method for measuring angstrom to nanometer distances in structural biology. Here, the performance of F ENDOR at fields of 3.4 T and 9.4 T is compared using model compounds containing one to three F atoms. CF groups are included in two compounds, for which the possible occurrence of uniaxial rotation might affect the distance distribution. At 9.4 T, pronounced asymmetric features are observed in many of the presented F ENDOR spectra. Data analysis by spectral simulations shows that these features arise from the chemical shift anisotropy (CSA) of the F nuclei. This asymmetry is also observed at 3.4 T, albeit to a much smaller extent, confirming the physical origin of the effect. The CSA parameters are well consistent with DFT predicted values and can be extracted from simulation of the experimental data in favourable cases, thereby providing additional information about the geometrical and electronic structure of the spin system. The feasibility of resolving the CSA at 9.4 T provides important information for the interpretation of line broadening in ENDOR spectra also at lower fields, which is relevant for developing methods to extract distance distributions from F ENDOR spectra.
脉冲场 ENDOR 光谱学为结构生物学中测量埃到纳米距离提供了一种选择性方法。在这里,使用含有一个到三个氟原子的模型化合物比较了 3.4 T 和 9.4 T 场下的 ENDOR 性能。两种化合物中都包含 CF 基团,其中单轴旋转的可能发生会影响距离分布。在 9.4 T 下,许多呈现的 F ENDOR 光谱中观察到明显的不对称特征。通过光谱模拟的数据分析表明,这些特征源于氟核的化学位移各向异性(CSA)。在 3.4 T 下也观察到了这种不对称性,尽管程度要小得多,但证实了该效应的物理起源。CSA 参数与 DFT 预测值非常一致,并且可以从实验数据的模拟中提取,从而提供有关自旋系统几何和电子结构的附加信息。在 9.4 T 下解析 CSA 的可行性为解释较低场下 ENDOR 光谱中的线宽提供了重要信息,这对于开发从 F ENDOR 光谱中提取距离分布的方法非常重要。