Suppr超能文献

雌激素受体阳性乳腺癌生存预测及耐药相关基因分析引言

Estrogen receptor-positive breast cancer survival prediction and analysis of resistance-related genes introduction.

作者信息

Shuai Chen, Yuan Fengyan, Liu Yu, Wang Chengchen, Wang Jiansong, He Hongye

机构信息

Department of Breast and Thyroid Surgery, Yiyang Central Hospital, Yiyang, Hunan, China.

Hunan Normal University of Medicine, Changsha, Hunan, China.

出版信息

PeerJ. 2021 Oct 26;9:e12202. doi: 10.7717/peerj.12202. eCollection 2021.

Abstract

BACKGROUND

In recent years, ER+ and HER2- breast cancer of adjuvant therapy has made great progress, including chemotherapy and endocrine therapy. We found that the responsiveness of breast cancer treatment was related to the prognosis of patients. However, reliable prognostic signatures based on ER+ and HER2- breast cancer and drug resistance-related prognostic markers have not been well confirmed, This study in amied to establish a drug resistance-related gene signature for risk stratification in ER+ and HER2- breast cancer.

METHODS

We used the data from The Cancer Genoma Atlas (TCGA) breast cancer dataset and gene expression database (Gene Expression Omnibus, GEO), constructed a risk profile based on four drug resistance-related genes, and developed a nomogram to predict the survival of patients with I-III ER+ and HER2- breast cancer. At the same time, we analyzed the relationship between immune infiltration and the expression of these four genes or risk groups.

RESULTS

Four drug resistance genes (AMIGO2, LGALS3BP, SCUBE2 and WLS) were found to be promising tools for ER+ and HER2- breast cancer risk stratification. Then, the nomogram, which combines genetic characteristics with known risk factors, produced better performance and net benefits in calibration and decision curve analysis. Similar results were validated in three separate GEO cohorts. All of these results showed that the model can be used as a prognostic classifier for clinical decision-making, individual prediction and treatment, as well as follow-up.

摘要

背景

近年来,雌激素受体阳性(ER+)和人表皮生长因子受体2阴性(HER2-)乳腺癌的辅助治疗取得了很大进展,包括化疗和内分泌治疗。我们发现乳腺癌治疗的反应性与患者的预后相关。然而,基于ER+和HER2-乳腺癌的可靠预后特征以及与耐药相关的预后标志物尚未得到很好的证实,本研究旨在建立一个与耐药相关的基因特征用于ER+和HER2-乳腺癌的风险分层。

方法

我们使用了来自癌症基因组图谱(TCGA)乳腺癌数据集和基因表达数据库(基因表达综合数据库,GEO)的数据,基于四个与耐药相关的基因构建了一个风险模型,并开发了一个列线图来预测I-III期ER+和HER2-乳腺癌患者的生存情况。同时,我们分析了免疫浸润与这四个基因或风险组表达之间的关系。

结果

发现四个耐药基因(AMIGO2、LGALS3BP、SCUBE2和WLS)是用于ER+和HER2-乳腺癌风险分层的有前景的工具。然后,结合遗传特征与已知风险因素的列线图在校准和决策曲线分析中表现出更好的性能和净效益。在三个独立的GEO队列中验证了类似的结果。所有这些结果表明,该模型可作为临床决策、个体预测和治疗以及随访的预后分类器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/266c/8555508/92129b6d7e62/peerj-09-12202-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验