College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, 266109 Qingdao, China.
Special Food Research Institute and Qingdao Special Food Research Institute, Qingdao Agricultural University, 700 Changcheng Road, 266109 Qingdao, China.
ACS Appl Mater Interfaces. 2021 Nov 24;13(46):54690-54705. doi: 10.1021/acsami.1c14802. Epub 2021 Nov 11.
During rapid proliferation and metabolism, tumor cells show a high dependence on methionine. The deficiency of methionine exhibits significant inhibition on tumor growth, which provides a potential therapeutic target in tumor therapy. Herein, ClO-loaded nanoparticles (fluvastatin sodium&metformin&bupivacaine&ClO@CaSiO@MnO-arginine-glycine-aspatic acid (RGD) (MFBC@CMR) NPs) were prepared for synergistic chlorine treatment and methionine-depletion starvation therapy. After outer layer MnO was degraded in the high glutathione (GSH) tumor microenvironment (TME), MFBC@CMR NPs released metformin (Me) to target the mitochondria, thus interfering with the tricarboxylic acid (TCA) cycle and promoting the production of lactate. In addition, released fluvastatin sodium (Flu) by the NPs acted on monocarboxylic acid transporter 4 (MCT4) in the cell membrane to inhibit lactate leakage and induce a decrease of intracellular pH, further prompting the NPs to release chlorine dioxide (ClO), which then oxidized methionine, inhibited tumor growth, and produced large numbers of Cl in the cytoplasm. Cl could enter mitochondria through the voltage-dependent anion channel (VDAC) channel, which was opened by bupivacaine (Bup). The disruption of Cl homeostasis promotes mitochondrial damage and membrane potential decline, leading to the release of cytochrome C (Cyt-C) and apoptosis inducing factor (AIF) and further inducing cell apoptosis. To sum up, the pH-regulating and ClO-loaded MFBC@CMR nanoplatform can achieve cascade chlorine treatment and methionine-depletion starvation therapy toward tumor cells, which is of great significance for improving the clinical tumor treatment effect.
在快速增殖和代谢过程中,肿瘤细胞对蛋氨酸表现出高度依赖。蛋氨酸缺乏对肿瘤生长具有显著的抑制作用,为肿瘤治疗提供了一个潜在的治疗靶点。在此,制备了负载 ClO 的纳米颗粒(氟伐他汀钠&二甲双胍&布比卡因&ClO@CaSiO@MnO-精氨酸-甘氨酸-天冬氨酸(RGD)(MFBC@CMR) NPs),用于协同氯处理和蛋氨酸耗竭饥饿治疗。在外层 MnO 在高谷胱甘肽(GSH)肿瘤微环境(TME)中降解后,MFBC@CMR NPs 释放二甲双胍(Me)靶向线粒体,从而干扰三羧酸(TCA)循环并促进乳酸的产生。此外,纳米颗粒释放的氟伐他汀钠(Flu)作用于细胞膜上的单羧酸转运蛋白 4(MCT4),抑制乳酸的外溢并诱导细胞内 pH 值下降,进一步促使纳米颗粒释放二氧化氯(ClO),氧化蛋氨酸,抑制肿瘤生长,并在细胞质中产生大量 Cl。Cl 可以通过电压依赖性阴离子通道(VDAC)通道进入线粒体,该通道被布比卡因(Bup)打开。Cl 稳态的破坏促进线粒体损伤和膜电位下降,导致细胞色素 C(Cyt-C)和凋亡诱导因子(AIF)的释放,进一步诱导细胞凋亡。总之,具有 pH 调节和 ClO 负载的 MFBC@CMR 纳米平台可以对肿瘤细胞进行级联氯处理和蛋氨酸耗竭饥饿治疗,这对于提高临床肿瘤治疗效果具有重要意义。
Chem Commun (Camb). 2021-4-27
ACS Appl Mater Interfaces. 2021-12-1
ACS Appl Mater Interfaces. 2021-11-24
Appl Microbiol Biotechnol. 2006-9
Cancer Metastasis Rev. 2025-5-10
Cancers (Basel). 2025-1-17
J Nanobiotechnology. 2024-6-8
Adv Sci (Weinh). 2024-1
Biosensors (Basel). 2022-2-6