Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire.
Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire.
Int J Radiat Oncol Biol Phys. 2022 Mar 15;112(4):1023-1032. doi: 10.1016/j.ijrobp.2021.10.148. Epub 2021 Nov 8.
To present a Monte Carlo (MC) beam model and its implementation in a clinical treatment planning system (TPS, Varian Eclipse) for a modified ultrahigh dose-rate electron FLASH radiation therapy (eFLASH-RT) linear accelerator (LINAC) using clinical accessories and geometry.
The gantry head without scattering foils or targets, representative of the LINAC modifications, was modeled in the Geant4-based GAMOS MC toolkit. The energy spectrum (σ) and beam source emittance cone angle (θ) were varied to match the calculated open-field central-axis percent depth dose (PDD) and lateral profiles with Gafchromic film measurements. The beam model and its Eclipse configuration were validated with measured profiles of the open field and nominal fields for clinical applicators. An MC forward dose calculation was conducted for a mouse whole-brain treatment, and an eFLASH-RT plan was compared with a conventional (Conv-) RT electron plan in Eclipse for a human patient with metastatic renal cell carcinoma.
The eFLASH beam model agreed best with measurements at σ = 0.5 MeV and θ = 3.9° ± 0.2°. The model and its Eclipse configuration were validated to clinically acceptable accuracy (the absolute average error was within 1.5% for in-water lateral, 3% for in-air lateral, and 2% for PDDs). The forward calculation showed adequate dose delivery to the entire mouse brain while sparing the organ at risk (lung). The human patient case demonstrated the planning capability with routine accessories to achieve an acceptable plan (90% of the tumor volume receiving 95% and 90% of the prescribed dose for eFLASH and Conv-RT, respectively).
To our knowledge, this is the first functional beam model commissioned in a clinical TPS for eFLASH-RT enabling planning and evaluation with minimal deviation from the Conv-RT workflow. It facilitates the clinical translation because eFLASH-RT and Conv-RT plan quality were comparable for a human patient involving complex geometries and tissue heterogeneity. The methods can be expanded to model other eFLASH irradiators with different beam characteristics.
介绍一种蒙特卡罗(MC)射束模型及其在瓦里安 Eclipse 临床治疗计划系统(TPS)中的实现,该模型用于使用临床附件和几何形状对改良超高剂量率电子 FLASH 放射治疗(eFLASH-RT)直线加速器(LINAC)进行治疗。
无散射箔或靶的旋转头部,代表 LINAC 的修改,在基于 Geant4 的 GAMOS MC 工具包中进行建模。改变了能谱(σ)和射束源发射度锥形角(θ),以匹配计算的开放野中心轴百分深度剂量(PDD)和与 Gafchromic 胶片测量的横向分布。使用临床施源器的开放野和标称野的测量分布对射束模型及其 Eclipse 配置进行了验证。对小鼠全脑治疗进行了 MC 正向剂量计算,并在 Eclipse 中比较了转移性肾细胞癌患者的 eFLASH-RT 计划与常规(Conv-)RT 电子计划。
eFLASH 射束模型在 σ=0.5 MeV 和 θ=3.9°±0.2°时与测量结果吻合最好。模型及其 Eclipse 配置经过验证,达到了临床可接受的精度(水中横向的绝对平均误差在 1.5%以内,空气中横向的误差在 3%以内,PDD 的误差在 2%以内)。正向计算表明,能够将足够的剂量输送到整个小鼠大脑,同时保护危及器官(肺)。人类患者病例展示了使用常规附件实现可接受计划的规划能力(对于 eFLASH 和 Conv-RT,分别有 90%的肿瘤体积接受 95%和 90%的规定剂量)。
据我们所知,这是第一个在临床 TPS 中委托用于 eFLASH-RT 的功能射束模型,它可以在与 Conv-RT 工作流程最小偏差的情况下进行规划和评估。它促进了临床转化,因为对于涉及复杂几何形状和组织异质性的人类患者,eFLASH-RT 和 Conv-RT 计划质量具有可比性。这些方法可以扩展到对具有不同射束特性的其他 eFLASH 辐照器进行建模。