Suppr超能文献

一种使用表面声波实现高通量细胞分离的蛇形通道微流控芯片。

A microfluidic chip with a serpentine channel enabling high-throughput cell separation using surface acoustic waves.

机构信息

School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China.

State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin 300072, China.

出版信息

Lab Chip. 2021 Nov 25;21(23):4608-4617. doi: 10.1039/d1lc00840d.

Abstract

As an acute inflammatory response, sepsis may cause septic shock and multiple organ failure. Rapid and reliable detection of pathogens from blood samples can promote early diagnosis and treatment of sepsis. However, traditional pathogen detection methods rely on bacterial blood culture, which is complex and time-consuming. Although pre-separation of bacteria from blood can help with the identification of pathogens for diagnosis, the required low-velocity fluid environment of most separation techniques greatly limits the processing capacity for blood samples. Here, we present an acoustofluidic device for high-throughput bacterial separation from human blood cells. Our device utilizes a serpentine microfluidic design and standing surface acoustic waves (SSAWs), and separates bacteria from blood cells effectively based on their size difference. The serpentine microstructure allows the operating distance of the acoustic field to be multiplied in a limited chip size the "spatial multiplexing" and "pressure node matching" of SSAW field. Microscopic observation and flow cytometry analysis shows that the device is helpful in improving the flow rate (2.6 μL min for blood samples; the corresponding velocity is ∼3 cm s) without losing separation purity or cell recovery. The serpentine microfluidic design provides a compatible solution for high-throughput separation, which can synergize with other functional designs to improve device performance. Further, its advantages such as low cost, high biocompatibility, label-free separation and ability to integrate with on-chip biosensors are promising for clinical utility in point-of-care diagnostic platforms.

摘要

作为一种急性炎症反应,败血症可能导致感染性休克和多器官衰竭。从血液样本中快速可靠地检测病原体可以促进败血症的早期诊断和治疗。然而,传统的病原体检测方法依赖于细菌血液培养,这种方法既复杂又耗时。虽然可以通过预分离血液中的细菌来帮助诊断病原体,但大多数分离技术所需的低速流体环境极大地限制了对血液样本的处理能力。在这里,我们提出了一种用于从人血细胞中高通量分离细菌的声流控装置。我们的装置利用了蛇形微流控设计和驻波表面声波(SSAWs),并根据其大小差异有效地从血细胞中分离出细菌。蛇形微结构允许在有限的芯片尺寸内将声场的作用距离倍增——即 SSAW 场的“空间复用”和“压力节点匹配”。显微镜观察和流式细胞术分析表明,该装置有助于提高流速(血液样本为 2.6 μL min;相应的速度约为 3 cm s),而不会降低分离纯度或细胞回收率。蛇形微流控设计为高通量分离提供了一种兼容的解决方案,可与其他功能设计协同提高装置性能。此外,其低成本、高生物相容性、无标记分离以及与片上生物传感器集成的能力使其有望在即时诊断平台的临床应用中得到应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验