Cambié Dario, Dobbelaar Jeroen, Riente Paola, Vanderspikken Jochen, Shen Chong, Seeberger Peter H, Gilmore Kerry, Debije Michael G, Noël Timothy
Department of Chemical Engineering and Chemistry, Sustainable Process Engineering, Micro Flow Chemistry & Synthetic Methodology, Eindhoven University of Technology, Het Kranenveld, Bldg 14-Helix, 5600 MB, Eindhoven, The Netherlands.
Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.
Angew Chem Int Ed Engl. 2019 Oct 1;58(40):14374-14378. doi: 10.1002/anie.201908553. Epub 2019 Aug 23.
The sun is the most sustainable light source available on our planet, therefore the direct use of sunlight for photochemistry is extremely appealing. Demonstrated here, for the first time, is that a diverse set of photon-driven transformations can be efficiently powered by solar irradiation with the use of solvent-resistant and cheap luminescent solar concentrator based photomicroreactors. Blue, green, and red reactors can accommodate both homogeneous and multiphase reaction conditions, including photochemical oxidations, photocatalytic trifluoromethylation chemistry, and metallaphotoredox transformations, thus spanning applications over the entire visible-light spectrum. To further illustrate the efficacy of these novel solar reactors, medicinally relevant molecules, such as ascaridole and an intermediate of artemisinin, were prepared as well.
太阳是我们星球上最可持续的光源,因此将阳光直接用于光化学极具吸引力。本文首次证明,使用耐溶剂且廉价的基于发光太阳能聚光器的光微反应器,一系列不同的光子驱动转化反应能够高效地由太阳辐射提供能量。蓝色、绿色和红色反应器可适应均相和多相反应条件,包括光化学氧化、光催化三氟甲基化反应以及金属光氧化还原转化反应,从而涵盖了整个可见光谱范围内的应用。为进一步说明这些新型太阳能反应器的功效,还制备了与药物相关的分子,如驱蛔灵和青蒿素的一种中间体。