Suppr超能文献

多组学研究囊性纤维化微生物组中的关键种。

Multi-Omics Study of Keystone Species in a Cystic Fibrosis Microbiome.

机构信息

Department of Biology, University of Miami, 1303 Memorial Dr., Coral Gables, FL 33146, USA.

Department of Biology, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA.

出版信息

Int J Mol Sci. 2021 Nov 7;22(21):12050. doi: 10.3390/ijms222112050.

Abstract

Ecological networking and in vitro studies predict that anaerobic, mucus-degrading bacteria are keystone species in cystic fibrosis (CF) microbiomes. The metabolic byproducts from these bacteria facilitate the colonization and growth of CF pathogens like . Here, a multi-omics study informed the control of putative anaerobic keystone species during a transition in antibiotic therapy of a CF patient. A quantitative metagenomics approach combining sequence data with epifluorescence microscopy showed that during periods of rapid lung function loss, the patient's lung microbiome was dominated by the anaerobic, mucus-degrading bacteria belonging to , , and genera. Untargeted metabolomics and community cultures identified high rates of fermentation in these sputa, with the accumulation of lactic acid, citric acid, and acetic acid. utilized these fermentation products for growth, as indicated by quantitative transcriptomics data. Transcription levels of genes for the utilization of fermentation products were proportional to the abundance of anaerobic bacteria. Clindamycin therapy targeting Gram-positive anaerobes rapidly suppressed anaerobic bacteria and the accumulation of fermentation products. Clindamycin also lowered the abundance and transcription of even though this patient's strain was resistant to this antibiotic. The treatment stabilized the patient's lung function and improved respiratory health for two months, lengthening by a factor of four the between-hospitalization time for this patient. Killing anaerobes indirectly limited the growth of by disrupting the cross-feeding of fermentation products. This case study supports the hypothesis that facultative anaerobes operated as keystone species in this CF microbiome. Personalized multi-omics may become a viable approach for routine clinical diagnostics in the future, providing critical information to inform treatment decisions.

摘要

生态网络和体外研究表明,在囊性纤维化(CF)微生物组中,厌氧、黏液降解细菌是关键物种。这些细菌的代谢副产物促进了 CF 病原体的定植和生长,如 。在这里,一项多组学研究为 CF 患者抗生素治疗转变期间潜在厌氧关键物种的控制提供了信息。一种结合了序列数据和荧光显微镜的定量宏基因组学方法表明,在肺功能迅速丧失期间,患者的肺部微生物组主要由属于 、 、和 属的厌氧、黏液降解细菌所主导。非靶向代谢组学和群落培养鉴定了这些痰液中高发酵率,乳酸、柠檬酸和乙酸的积累。如定量转录组学数据所示, 利用这些发酵产物进行生长。用于利用发酵产物的 基因的转录水平与厌氧菌的丰度成正比。针对革兰氏阳性厌氧菌的克林霉素治疗迅速抑制了厌氧菌和发酵产物的积累。克林霉素还降低了 基因的丰度和转录水平,尽管该患者的菌株对这种抗生素有耐药性。这种治疗稳定了患者的肺功能,并在两个月内改善了呼吸健康,使该患者的住院时间延长了四倍。杀死厌氧菌通过破坏发酵产物的交叉喂养间接限制了 的生长。这项病例研究支持了一个假设,即在这个 CF 微生物组中,兼性厌氧菌作为关键物种发挥作用。个性化多组学可能成为未来常规临床诊断的可行方法,为治疗决策提供关键信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bd0/8584531/71bdb0f7155d/ijms-22-12050-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验