Suppr超能文献

基于深度学习的 CT 图像冠状动脉钙检测。

Deep-Learning-Based Coronary Artery Calcium Detection from CT Image.

机构信息

Department of Software Convergence, Soonchunhyang University, Asan 31538, Korea.

Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Korea.

出版信息

Sensors (Basel). 2021 Oct 25;21(21):7059. doi: 10.3390/s21217059.

Abstract

One of the most common methods for diagnosing coronary artery disease is the use of the coronary artery calcium score CT. However, the current diagnostic method using the coronary artery calcium score CT requires a considerable time, because the radiologist must manually check the CT images one-by-one, and check the exact range. In this paper, three CNN models are applied for 1200 normal cardiovascular CT images, and 1200 CT images in which calcium is present in the cardiovascular system. We conduct the experimental test by classifying the CT image data into the original coronary artery calcium score CT images containing the entire rib cage, the cardiac segmented images that cut out only the heart region, and cardiac cropped images that are created by using the cardiac images that are segmented into nine sub-parts and enlarged. As a result of the experimental test to determine the presence of calcium in a given CT image using Inception Resnet v2, VGG, and Resnet 50 models, the highest accuracy of 98.52% was obtained when cardiac cropped image data was applied using the Resnet 50 model. Therefore, in this paper, it is expected that through further research, both the simple presence of calcium and the automation of the calcium analysis score for each coronary artery calcium score CT will become possible.

摘要

诊断冠状动脉疾病最常用的方法之一是使用冠状动脉钙化 CT 评分。然而,目前使用冠状动脉钙化 CT 评分的诊断方法需要相当长的时间,因为放射科医生必须手动逐个检查 CT 图像,并检查确切的范围。在本文中,我们应用了三个 CNN 模型对 1200 张正常心血管 CT 图像和 1200 张心血管系统中存在钙的 CT 图像进行了分类。我们通过将 CT 图像数据分类为包含整个肋骨的原始冠状动脉钙化 CT 图像、仅切除心脏区域的心脏分段图像以及使用分段成九个部分并放大的心脏图像创建的心脏裁剪图像,对分类模型进行了实验测试。使用 Inception Resnet v2、VGG 和 Resnet 50 模型对给定 CT 图像中钙存在的情况进行实验测试,结果表明,在使用 Resnet 50 模型应用心脏裁剪图像数据时,最高准确率达到 98.52%。因此,本文预计通过进一步研究,不仅可以实现对每个冠状动脉钙化 CT 评分的钙存在情况的简单自动化分析,还可以实现对钙分析评分的自动化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d6c/8588163/158413750aac/sensors-21-07059-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验