Suppr超能文献

LightDPH:用于皮肤病变分类的轻量级双投影头分层对比学习

LightDPH: Lightweight Dual-Projection-Head Hierarchical Contrastive Learning for Skin Lesion Classification.

作者信息

Hsu Benny Wei-Yun, Tseng Vincent S

机构信息

Institute of Computer Science and Engineering, National Yang Ming Chiao Tung University, No. 1001, Daxue Rd., Hsinchu City, 300093 Taiwan Republic of China.

Department of Computer Science, National Yang Ming Chiao Tung University, No. 1001, Daxue Rd., Hsinchu City, 300093 Taiwan Republic of China.

出版信息

J Healthc Inform Res. 2024 Oct 1;8(4):619-639. doi: 10.1007/s41666-024-00174-5. eCollection 2024 Dec.

Abstract

Effective skin cancer detection is crucial for early intervention and improved treatment outcomes. Previous studies have primarily focused on enhancing the performance of skin lesion classification models. However, there is a growing need to consider the practical requirements of real-world scenarios, such as portable applications that require lightweight models embedded in devices. Therefore, this study aims to propose a novel method that can address the major-type misclassification problem with a lightweight model. This study proposes an innovative Lightweight Dual Projection-Head Hierarchical contrastive learning (LightDPH) method. We introduce a dual projection-head mechanism to a contrastive learning framework. This mechanism is utilized to train a model with our proposed multi-level contrastive loss (MultiCon Loss), which can effectively learn hierarchical information from samples. Meanwhile, we present a distance-based weight (DBW) function to adjust losses based on hierarchical levels. This unique combination of MultiCon Loss and DBW function in LightDPH tackles the problem of major-type misclassification with lightweight models and enhances the model's sensitivity in skin lesion classification. The experimental results demonstrate that LightDPH significantly reduces the number of parameters by 52.6% and computational complexity by 29.9% in GFLOPs while maintaining high classification performance comparable to state-of-the-art methods. This study also presented a novel evaluation metric, model efficiency score (MES), to evaluate the cost-effectiveness of models with scaling and classification performance. The proposed LightDPH effectively mitigates major-type misclassification and works in a resource-efficient manner, making it highly suitable for clinical applications in resource-constrained environments. To the best of our knowledge, this is the first work that develops an effective lightweight hierarchical classification model for skin lesion detection.

摘要

有效的皮肤癌检测对于早期干预和改善治疗结果至关重要。以往的研究主要集中在提高皮肤病变分类模型的性能。然而,越来越需要考虑现实世界场景的实际需求,例如需要在设备中嵌入轻量级模型的便携式应用。因此,本研究旨在提出一种能够用轻量级模型解决主要类型错误分类问题的新方法。本研究提出了一种创新的轻量级双投影头分层对比学习(LightDPH)方法。我们将双投影头机制引入对比学习框架。该机制用于使用我们提出的多级对比损失(MultiCon Loss)训练模型,该损失可以有效地从样本中学习分层信息。同时,我们提出了一种基于距离的权重(DBW)函数,以根据分层级别调整损失。LightDPH中MultiCon Loss和DBW函数的这种独特组合解决了轻量级模型的主要类型错误分类问题,并提高了模型在皮肤病变分类中的灵敏度。实验结果表明,LightDPH在保持与现有方法相当的高分类性能的同时,显著减少了52.6%的参数数量和29.9%的计算复杂度(以GFLOPs计)。本研究还提出了一种新的评估指标,模型效率得分(MES),以评估具有缩放和分类性能的模型的成本效益。所提出的LightDPH有效地减轻了主要类型的错误分类,并以资源高效的方式工作,使其非常适合在资源受限环境中的临床应用。据我们所知,这是第一项开发用于皮肤病变检测的有效轻量级分层分类模型的工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ab0/11499555/69bbbdfab332/41666_2024_174_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验