Suppr超能文献

一种用于诊断钩端螺旋体病的显微镜凝集试验的机器学习模型。

A machine learning model of microscopic agglutination test for diagnosis of leptospirosis.

机构信息

Department of Electrical Engineering and Computer Science, Faculty of Engineering, Tottori University, Tottori, Japan.

Division of Bacteriology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan.

出版信息

PLoS One. 2021 Nov 16;16(11):e0259907. doi: 10.1371/journal.pone.0259907. eCollection 2021.

Abstract

Leptospirosis is a zoonosis caused by the pathogenic bacterium Leptospira. The Microscopic Agglutination Test (MAT) is widely used as the gold standard for diagnosis of leptospirosis. In this method, diluted patient serum is mixed with serotype-determined Leptospires, and the presence or absence of aggregation is determined under a dark-field microscope to calculate the antibody titer. Problems of the current MAT method are 1) a requirement of examining many specimens per sample, and 2) a need of distinguishing contaminants from true aggregates to accurately identify positivity. Therefore, increasing efficiency and accuracy are the key to refine MAT. It is possible to achieve efficiency and standardize accuracy at the same time by automating the decision-making process. In this study, we built an automatic identification algorithm of MAT using a machine learning method to determine agglutination within microscopic images. The machine learned the features from 316 positive and 230 negative MAT images created with sera of Leptospira-infected (positive) and non-infected (negative) hamsters, respectively. In addition to the acquired original images, wavelet-transformed images were also considered as features. We utilized a support vector machine (SVM) as a proposed decision method. We validated the trained SVMs with 210 positive and 154 negative images. When the features were obtained from original or wavelet-transformed images, all negative images were misjudged as positive, and the classification performance was very low with sensitivity of 1 and specificity of 0. In contrast, when the histograms of wavelet coefficients were used as features, the performance was greatly improved with sensitivity of 0.99 and specificity of 0.99. We confirmed that the current algorithm judges the positive or negative of agglutinations in MAT images and gives the further possibility of automatizing MAT procedure.

摘要

钩端螺旋体病是一种由致病性细菌钩端螺旋体引起的人畜共患病。显微镜凝集试验(MAT)被广泛用作诊断钩端螺旋体病的金标准。在该方法中,将稀释的患者血清与血清型确定的钩端螺旋体混合,并在暗场显微镜下确定是否存在聚集,以计算抗体滴度。目前 MAT 方法存在的问题是 1)每个样本需要检查多个标本,2)需要区分污染物和真正的聚集物,以准确识别阳性。因此,提高效率和准确性是完善 MAT 的关键。通过自动化决策过程,可以同时提高效率和标准化准确性。在这项研究中,我们使用机器学习方法构建了一种 MAT 自动识别算法,以确定显微镜图像中的凝集。机器从用感染(阳性)和未感染(阴性)仓鼠血清制成的 316 个阳性和 230 个阴性 MAT 图像中学习特征。除了获得的原始图像外,还考虑了小波变换后的图像作为特征。我们使用支持向量机(SVM)作为提出的决策方法。我们用 210 个阳性和 154 个阴性图像验证了训练好的 SVM。当从原始图像或小波变换图像中获取特征时,所有阴性图像都被错误地判断为阳性,分类性能非常低,灵敏度为 1,特异性为 0。相比之下,当使用小波系数的直方图作为特征时,性能得到了极大的提高,灵敏度为 0.99,特异性为 0.99。我们证实,目前的算法可以判断 MAT 图像中凝集的阳性或阴性,并进一步实现 MAT 程序的自动化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef6f/8594833/75c049740f96/pone.0259907.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验