Choi Byong Su, Beltran Chris J, Olberg Sven, Liang Xiaoying, Lu Bo, Tan Jun, Parisi Alessio, Denbeigh Janet, Yaddanapudi Sridhar, Kim Jin Sung, Furutani Keith M, Park Justin C, Song Bongyong
Department of Radiation Oncology, Mayo Clinic, Florida, USA.
Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea.
Med Phys. 2024 Nov;51(11):8568-8583. doi: 10.1002/mp.17361. Epub 2024 Aug 21.
Adaptive radiotherapy (ART) workflows have been increasingly adopted to achieve dose escalation and tissue sparing under shifting anatomic conditions, but the necessity of recontouring and the associated time burden hinders a real-time or online ART workflow. In response to this challenge, approaches to auto-segmentation involving deformable image registration, atlas-based segmentation, and deep learning-based segmentation (DLS) have been developed. Despite the particular promise shown by DLS methods, implementing these approaches in a clinical setting remains a challenge, namely due to the difficulty of curating a data set of sufficient size and quality so as to achieve generalizability in a trained model.
To address this challenge, we have developed an intentional deep overfit learning (IDOL) framework tailored to the auto-segmentation task. However, certain limitations were identified, particularly the insufficiency of the personalized dataset to effectively overfit the model. In this study, we introduce a personalized hyperspace learning (PHL)-IDOL segmentation framework capable of generating datasets that induce the model to overfit specific patient characteristics for medical image segmentation.
The PHL-IDOL model is trained in two stages. In the first, a conventional, general model is trained with a diverse set of patient data (n = 100 patients) consisting of CT images and clinical contours. Following this, the general model is tuned with a data set consisting of two components: (a) selection of a subset of the patient data (m < n) using the similarity metrics (mean square error (MSE), peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and the universal quality image index (UQI) values); (b) adjust the CT and the clinical contours using a deformed vector generated from the reference patient and the selected patients using (a). After training, the general model, the continual model, the conventional IDOL model, and the proposed PHL-IDOL model were evaluated using the volumetric dice similarity coefficient (VDSC) and the Hausdorff distance 95% (HD95%) computed for 18 structures in 20 test patients.
Implementing the PHL-IDOL framework resulted in improved segmentation performance for each patient. The Dice scores increased from 0.81 0.05 with the general model, 0.83 for the continual model, 0.83 for the conventional IDOL model to an average of 0.87 with the PHL-IDOL model. Similarly, the Hausdorff distance decreased from 3.06 with the general model, 2.84 for the continual model, 2.79 for the conventional IDOL model and 2.36 for the PHL-IDOL model. All the standard deviations were decreased by nearly half of the values comparing the general model and the PHL-IDOL model.
The PHL-IDOL framework applied to the auto-segmentation task achieves improved performance compared to the general DLS approach, demonstrating the promise of leveraging patient-specific prior information in a task central to online ART workflows.
自适应放疗(ART)工作流程已越来越多地被采用,以在解剖条件变化的情况下实现剂量递增和组织保护,但重新勾画轮廓的必要性以及相关的时间负担阻碍了实时或在线ART工作流程。为应对这一挑战,已经开发了涉及可变形图像配准、基于图谱的分割和基于深度学习的分割(DLS)的自动分割方法。尽管DLS方法显示出特别的前景,但在临床环境中实施这些方法仍然是一个挑战,即由于难以整理出足够大小和质量的数据集,以便在训练模型中实现通用性。
为应对这一挑战,我们开发了一种专门针对自动分割任务的有意深度过拟合学习(IDOL)框架。然而,发现了某些局限性,特别是个性化数据集不足以有效地使模型过拟合。在本研究中,我们引入了一种个性化超空间学习(PHL)-IDOL分割框架,该框架能够生成诱导模型针对医学图像分割过拟合特定患者特征的数据集。
PHL-IDOL模型分两个阶段进行训练。在第一阶段,使用由CT图像和临床轮廓组成的不同患者数据集(n = 100例患者)训练一个传统的通用模型。在此之后,使用由两个部分组成的数据集对通用模型进行调整:(a)使用相似性度量(均方误差(MSE)、峰值信噪比(PSNR)、结构相似性指数(SSIM)和通用质量图像指数(UQI)值)选择患者数据的一个子集(m < n);(b)使用从参考患者和使用(a)选择的患者生成的变形向量调整CT和临床轮廓。训练后,使用为20例测试患者的18个结构计算的体积骰子相似系数(VDSC)和95%豪斯多夫距离(HD95%)对通用模型、连续模型、传统IDOL模型和所提出的PHL-IDOL模型进行评估。
实施PHL-IDOL框架使每个患者的分割性能得到改善。骰子分数从通用模型的0.81±0.05、连续模型的0.83、传统IDOL模型的0.83增加到PHL-IDOL模型的平均0.87±。同样,豪斯多夫距离从通用模型的3.06±、连续模型的2.84±、传统IDOL模型的2.79±和PHL-IDOL模型的2.36±降低。与通用模型和PHL-IDOL模型相比,所有标准差的值都降低了近一半。
应用于自动分割任务的PHL-IDOL框架与一般的DLS方法相比,性能得到了改善,证明了在在线ART工作流程的核心任务中利用患者特定先验信息的前景。