Suppr超能文献

基于开源深度学习的光学相干断层扫描图像中鼠标氏管自动分割。

Open-source deep learning-based automatic segmentation of mouse Schlemm's canal in optical coherence tomography images.

机构信息

Department of Biomedical Engineering, Duke University, Durham, NC, United States.

Department of Ophthalmology, Duke University, Durham, NC, United States.

出版信息

Exp Eye Res. 2022 Jan;214:108844. doi: 10.1016/j.exer.2021.108844. Epub 2021 Nov 16.

Abstract

The purpose of this study was to develop an automatic deep learning-based approach and corresponding free, open-source software to perform segmentation of the Schlemm's canal (SC) lumen in optical coherence tomography (OCT) scans of living mouse eyes. A novel convolutional neural network (CNN) for semantic segmentation grounded in a U-Net architecture was developed by incorporating a late fusion scheme, multi-scale input image pyramid, dilated residual convolution blocks, and attention-gating. 163 pairs of intensity and speckle variance (SV) OCT B-scans acquired from 32 living mouse eyes were used for training, validation, and testing of this CNN model for segmentation of the SC lumen. The proposed model achieved a mean Dice Similarity Coefficient (DSC) of 0.694 ± 0.256 and median DSC of 0.791, while manual segmentation performed by a second expert grader achieved a mean and median DSC of 0.713 ± 0.209 and 0.763, respectively. This work presents the first automatic method for segmentation of the SC lumen in OCT images of living mouse eyes. The performance of the proposed model is comparable to the performance of a second human grader. Open-source automatic software for segmentation of the SC lumen is expected to accelerate experiments for studying treatment efficacy of new drugs affecting intraocular pressure and related diseases such as glaucoma, which present as changes in the SC area.

摘要

本研究旨在开发一种自动深度学习方法和相应的免费开源软件,以对活体小鼠眼睛的光学相干断层扫描(OCT)图像中的施莱姆管(SC)管腔进行分割。通过结合晚期融合方案、多尺度输入图像金字塔、扩张残差卷积块和注意力门控,开发了一种基于 U-Net 架构的新型语义分割卷积神经网络(CNN)。该 CNN 模型用于分割 SC 管腔,其训练、验证和测试数据来自 32 只活体小鼠眼睛的 163 对强度和散斑方差(SV)OCT B 扫描。所提出的模型的平均 Dice 相似系数(DSC)为 0.694 ± 0.256,中位数 DSC 为 0.791,而由第二位专家分级员进行的手动分割的平均和中位数 DSC 分别为 0.713 ± 0.209 和 0.763。这项工作提出了一种用于活体小鼠眼睛 OCT 图像中 SC 管腔自动分割的首个方法。所提出的模型的性能可与第二位人类分级员的性能相媲美。用于 SC 管腔自动分割的开源软件有望加速研究影响眼压的新药的治疗效果的实验,以及与 SC 区域变化相关的疾病,如青光眼。

相似文献

1
Open-source deep learning-based automatic segmentation of mouse Schlemm's canal in optical coherence tomography images.
Exp Eye Res. 2022 Jan;214:108844. doi: 10.1016/j.exer.2021.108844. Epub 2021 Nov 16.
2
Schlemm's canal and trabecular meshwork morphology in high myopia.
Ophthalmic Physiol Opt. 2018 May;38(3):266-272. doi: 10.1111/opo.12451.
4
Assessment of Schlemm's canal with swept-source optical coherence tomography in Graves' ophthalmopathy.
Graefes Arch Clin Exp Ophthalmol. 2024 Jul;262(7):2219-2226. doi: 10.1007/s00417-024-06397-x. Epub 2024 Feb 24.
6
Assessment of a Segmentation-Free Deep Learning Algorithm for Diagnosing Glaucoma From Optical Coherence Tomography Scans.
JAMA Ophthalmol. 2020 Apr 1;138(4):333-339. doi: 10.1001/jamaophthalmol.2019.5983.
7
Deep learning algorithms to isolate and quantify the structures of the anterior segment in optical coherence tomography images.
Br J Ophthalmol. 2021 Sep;105(9):1231-1237. doi: 10.1136/bjophthalmol-2019-315723. Epub 2020 Sep 26.
8
Spectral-domain optical coherence tomographic assessment of Schlemm's canal in Chinese subjects with primary open-angle glaucoma.
Ophthalmology. 2013 Apr;120(4):709-15. doi: 10.1016/j.ophtha.2012.10.008. Epub 2013 Jan 23.

引用本文的文献

1
Deep learning and optical coherence tomography in glaucoma: Bridging the diagnostic gap on structural imaging.
Front Ophthalmol (Lausanne). 2022 Sep 21;2:937205. doi: 10.3389/fopht.2022.937205. eCollection 2022.
2
Reverse translation of artificial intelligence in glaucoma: Connecting basic science with clinical applications.
Front Ophthalmol (Lausanne). 2023;2. doi: 10.3389/fopht.2022.1057896. Epub 2023 Jan 4.

本文引用的文献

1
Full circumferential morphological analysis of Schlemm's canal in human eyes using megahertz swept source OCT.
Biomed Opt Express. 2021 Jun 7;12(7):3865-3877. doi: 10.1364/BOE.426218. eCollection 2021 Jul 1.
3
Automated Segmentation of Retinal Fluid Volumes From Structural and Angiographic Optical Coherence Tomography Using Deep Learning.
Transl Vis Sci Technol. 2020 Oct 8;9(2):54. doi: 10.1167/tvst.9.2.54. eCollection 2020 Oct.
4
Level-Set Method for Image Analysis of Schlemm's Canal and Trabecular Meshwork.
Transl Vis Sci Technol. 2020 Sep 4;9(10):7. doi: 10.1167/tvst.9.10.7. eCollection 2020 Sep.
5
Integral role for lysyl oxidase-like-1 in conventional outflow tissue function and behavior.
FASEB J. 2020 Aug;34(8):10762-10777. doi: 10.1096/fj.202000702RR. Epub 2020 Jul 5.
6
In Vivo Imaging of Schlemm's Canal and Limbal Vascular Network in Mouse Using Visible-Light OCT.
Invest Ophthalmol Vis Sci. 2020 Feb 7;61(2):23. doi: 10.1167/iovs.61.2.23.
7
Beyond Performance Metrics: Automatic Deep Learning Retinal OCT Analysis Reproduces Clinical Trial Outcome.
Ophthalmology. 2020 Jun;127(6):793-801. doi: 10.1016/j.ophtha.2019.12.015. Epub 2019 Dec 23.
8
In vivo measurement of trabecular meshwork stiffness in a corticosteroid-induced ocular hypertensive mouse model.
Proc Natl Acad Sci U S A. 2019 Jan 29;116(5):1714-1722. doi: 10.1073/pnas.1814889116. Epub 2019 Jan 16.
9
Deep learning based detection of cone photoreceptors with multimodal adaptive optics scanning light ophthalmoscope images of achromatopsia.
Biomed Opt Express. 2018 Jul 18;9(8):3740-3756. doi: 10.1364/BOE.9.003740. eCollection 2018 Aug 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验