Suppr超能文献

超越性能指标:自动深度学习视网膜 OCT 分析再现临床试验结果。

Beyond Performance Metrics: Automatic Deep Learning Retinal OCT Analysis Reproduces Clinical Trial Outcome.

机构信息

Department of Biomedical Engineering, Duke University, Durham, North Carolina.

Ophthalmology, Emmes, Rockville, Maryland.

出版信息

Ophthalmology. 2020 Jun;127(6):793-801. doi: 10.1016/j.ophtha.2019.12.015. Epub 2019 Dec 23.

Abstract

PURPOSE

To validate the efficacy of a fully automatic, deep learning-based segmentation algorithm beyond conventional performance metrics by measuring the primary outcome of a clinical trial for macular telangiectasia type 2 (MacTel2).

DESIGN

Evaluation of diagnostic test or technology.

PARTICIPANTS

A total of 92 eyes from 62 participants with MacTel2 from a phase 2 clinical trial (NCT01949324) randomized to 1 of 2 treatment groups METHODS: The ellipsoid zone (EZ) defect areas were measured on spectral domain OCT images of each eye at 2 time points (baseline and month 24) by a fully automatic, deep learning-based segmentation algorithm. The change in EZ defect area from baseline to month 24 was calculated and analyzed according to the clinical trial protocol.

MAIN OUTCOME MEASURE

Difference in the change in EZ defect area from baseline to month 24 between the 2 treatment groups.

RESULTS

The difference in the change in EZ defect area from baseline to month 24 between the 2 treatment groups measured by the fully automatic segmentation algorithm was 0.072±0.035 mm (P = 0.021). This was comparable to the outcome of the clinical trial using semiautomatic measurements by expert readers, 0.065±0.033 mm (P = 0.025).

CONCLUSIONS

The fully automatic segmentation algorithm was as accurate as semiautomatic expert segmentation to assess EZ defect areas and was able to reliably reproduce the statistically significant primary outcome measure of the clinical trial. This approach, to validate the performance of an automatic segmentation algorithm on the primary clinical trial end point, provides a robust gauge of its clinical applicability.

摘要

目的

通过测量 2 期临床试验中黄斑毛细血管扩张症 2 型(MacTel2)的主要结果,验证一种完全自动、基于深度学习的分割算法在常规性能指标之外的功效。

设计

诊断测试或技术的评估。

参与者

共有 62 名 MacTel2 患者的 92 只眼参与了一项 2 期临床试验(NCT01949324),随机分为 2 个治疗组。

方法

使用一种完全自动、基于深度学习的分割算法,在 2 个时间点(基线和 24 个月)测量每个眼的光谱域 OCT 图像上的椭圆体带(EZ)缺损面积。根据临床试验方案计算和分析 EZ 缺损面积从基线到 24 个月的变化。

主要观察指标

2 个治疗组从基线到 24 个月 EZ 缺损面积变化的差异。

结果

使用全自动分割算法测量的 2 个治疗组从基线到 24 个月 EZ 缺损面积变化的差异为 0.072±0.035mm(P=0.021)。这与使用专家读者半自动测量的临床试验结果相当,为 0.065±0.033mm(P=0.025)。

结论

全自动分割算法与半自动专家分割一样准确,可用于评估 EZ 缺损面积,并能够可靠地再现临床试验的主要终点统计学显著测量值。这种方法可用于验证自动分割算法在主要临床试验终点上的性能,为其临床适用性提供了可靠的衡量标准。

相似文献

引用本文的文献

本文引用的文献

7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验