Loo Jessica, Fang Leyuan, Cunefare David, Jaffe Glenn J, Farsiu Sina
Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
Department of Ophthalmology, Duke University, Durham, NC 27708, USA.
Biomed Opt Express. 2018 May 16;9(6):2681-2698. doi: 10.1364/BOE.9.002681. eCollection 2018 Jun 1.
Photoreceptor ellipsoid zone (EZ) defects visible on optical coherence tomography (OCT) are important imaging biomarkers for the onset and progression of macular diseases. As such, accurate quantification of EZ defects is paramount to monitor disease progression and treatment efficacy over time. We developed and trained a novel deep learning-based method called Deep OCT Atrophy Detection (DOCTAD) to automatically segment EZ defect areas by classifying 3-dimensional A-scan clusters as normal or defective. Furthermore, we introduce a longitudinal transfer learning paradigm in which the algorithm learns from segmentation errors on images obtained at one time point to segment subsequent images with higher accuracy. We evaluated the performance of this method on 134 eyes of 67 subjects enrolled in a clinical trial of a novel macular telangiectasia type 2 (MacTel2) therapeutic agent. Our method compared favorably to other deep learning-based and non-deep learning-based methods in matching expert manual segmentations. To the best of our knowledge, this is the first automatic segmentation method developed for EZ defects on OCT images of MacTel2.
光学相干断层扫描(OCT)上可见的光感受器椭圆体区(EZ)缺陷是黄斑疾病发生和进展的重要成像生物标志物。因此,准确量化EZ缺陷对于长期监测疾病进展和治疗效果至关重要。我们开发并训练了一种名为深度OCT萎缩检测(DOCTAD)的新型深度学习方法,通过将三维A扫描簇分类为正常或缺陷来自动分割EZ缺陷区域。此外,我们引入了一种纵向迁移学习范式,即算法从在一个时间点获得的图像上的分割错误中学习,以更高的精度分割后续图像。我们在一项新型2型黄斑毛细血管扩张症(MacTel2)治疗药物的临床试验中,对67名受试者的134只眼睛评估了该方法的性能。在与专家手动分割匹配方面,我们的方法优于其他基于深度学习和非深度学习的方法。据我们所知,这是首个针对MacTel2的OCT图像上的EZ缺陷开发的自动分割方法。