Suppr超能文献

器官特异性转移中基因组特征的机器学习可对原发性肿瘤的进展风险进行分层。

Machine learning of genomic features in organotropic metastases stratifies progression risk of primary tumors.

作者信息

Jiang Biaobin, Mu Quanhua, Qiu Fufang, Li Xuefeng, Xu Weiqi, Yu Jun, Fu Weilun, Cao Yong, Wang Jiguang

机构信息

Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China.

Tencent AI Lab, Shenzhen, Guangdong, China.

出版信息

Nat Commun. 2021 Nov 18;12(1):6692. doi: 10.1038/s41467-021-27017-w.

Abstract

Metastatic cancer is associated with poor patient prognosis but its spatiotemporal behavior remains unpredictable at early stage. Here we develop MetaNet, a computational framework that integrates clinical and sequencing data from 32,176 primary and metastatic cancer cases, to assess metastatic risks of primary tumors. MetaNet achieves high accuracy in distinguishing the metastasis from the primary in breast and prostate cancers. From the prediction, we identify Metastasis-Featuring Primary (MFP) tumors, a subset of primary tumors with genomic features enriched in metastasis and demonstrate their higher metastatic risk and shorter disease-free survival. In addition, we identify genomic alterations associated with organ-specific metastases and employ them to stratify patients into various risk groups with propensities toward different metastatic organs. This organotropic stratification method achieves better prognostic value than the standard histological grading system in prostate cancer, especially in the identification of Bone-MFP and Liver-MFP subtypes, with potential in informing organ-specific examinations in follow-ups.

摘要

转移性癌症与患者预后不良相关,但在早期其时空行为仍不可预测。在此,我们开发了MetaNet,这是一个整合了来自32176例原发性和转移性癌症病例的临床和测序数据的计算框架,用于评估原发性肿瘤的转移风险。MetaNet在区分乳腺癌和前列腺癌的转移灶与原发灶方面具有很高的准确性。通过预测,我们识别出具有转移特征的原发性(MFP)肿瘤,这是原发性肿瘤的一个子集,其基因组特征在转移中富集,并证明它们具有更高的转移风险和更短的无病生存期。此外,我们识别出与器官特异性转移相关的基因组改变,并利用它们将患者分层为具有不同转移器官倾向的各种风险组。这种器官趋向性分层方法在前列腺癌中比标准组织学分级系统具有更好的预后价值,特别是在识别骨MFP和肝MFP亚型方面,具有在随访中指导器官特异性检查的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e6f/8602327/187f78e284a3/41467_2021_27017_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验