Suppr超能文献

神经计算的几何结构统一了工作记忆和规划。

Geometry of neural computation unifies working memory and planning.

机构信息

Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06510.

Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510.

出版信息

Proc Natl Acad Sci U S A. 2022 Sep 13;119(37):e2115610119. doi: 10.1073/pnas.2115610119. Epub 2022 Sep 6.

Abstract

Real-world tasks require coordination of working memory, decision-making, and planning, yet these cognitive functions have disproportionately been studied as independent modular processes in the brain. Here, we propose that contingency representations, defined as mappings for how future behaviors depend on upcoming events, can unify working memory and planning computations. We designed a task capable of disambiguating distinct types of representations. In task-optimized recurrent neural networks, we investigated possible circuit mechanisms for contingency representations and found that these representations can explain neurophysiological observations from the prefrontal cortex during working memory tasks. Our experiments revealed that human behavior is consistent with contingency representations and not with traditional sensory models of working memory. Finally, we generated falsifiable predictions for neural data to identify contingency representations in neural data and to dissociate different models of working memory. Our findings characterize a neural representational strategy that can unify working memory, planning, and context-dependent decision-making.

摘要

现实世界中的任务需要协调工作记忆、决策和规划,然而这些认知功能在大脑中被不成比例地作为独立的模块化过程进行研究。在这里,我们提出,协变表示(contingency representations)可以将工作记忆和规划计算统一起来,其定义为未来行为如何依赖即将发生的事件的映射。我们设计了一个能够区分不同类型表示的任务。在任务优化的递归神经网络中,我们研究了协变表示的可能电路机制,并发现这些表示可以解释前额叶皮层在工作记忆任务期间的神经生理学观察结果。我们的实验表明,人类行为与协变表示一致,而不是与传统的工作记忆感觉模型一致。最后,我们针对神经数据生成了可证伪的预测,以识别神经数据中的协变表示,并区分工作记忆的不同模型。我们的研究结果描绘了一种神经表示策略,可以将工作记忆、规划和上下文相关的决策统一起来。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e5b/9478653/f96e1528cdf7/pnas.2115610119fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验