School of Data Science, City University of Hong Kong, Hong Kong SAR, People's Republic of China.
Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
Philos Trans A Math Phys Eng Sci. 2022 Jan 10;380(2214):20210127. doi: 10.1098/rsta.2021.0127. Epub 2021 Nov 22.
During the COVID-19 pandemic, more than ever, data science has become a powerful weapon in combating an infectious disease epidemic and arguably any future infectious disease epidemic. Computer scientists, data scientists, physicists and mathematicians have joined public health professionals and virologists to confront the largest pandemic in the century by capitalizing on the large-scale 'big data' generated and harnessed for combating the COVID-19 pandemic. In this paper, we review the newly born data science approaches to confronting COVID-19, including the estimation of epidemiological parameters, digital contact tracing, diagnosis, policy-making, resource allocation, risk assessment, mental health surveillance, social media analytics, drug repurposing and drug development. We compare the new approaches with conventional epidemiological studies, discuss lessons we learned from the COVID-19 pandemic, and highlight opportunities and challenges of data science approaches to confronting future infectious disease epidemics. This article is part of the theme issue 'Data science approaches to infectious disease surveillance'.
在 COVID-19 大流行期间,数据科学比以往任何时候都更成为应对传染病流行的有力武器,可以说也是应对未来任何传染病流行的有力武器。计算机科学家、数据科学家、物理学家和数学家与公共卫生专业人员和病毒学家一道,利用为应对 COVID-19 大流行而产生和利用的大规模“大数据”,共同应对本世纪最大的一次大流行。在本文中,我们回顾了应对 COVID-19 的新兴数据科学方法,包括对流行病学参数的估计、数字接触追踪、诊断、决策制定、资源配置、风险评估、心理健康监测、社交媒体分析、药物再利用和药物开发。我们将新方法与传统的流行病学研究进行了比较,讨论了我们从 COVID-19 大流行中吸取的经验教训,并强调了数据科学方法应对未来传染病流行的机遇和挑战。本文是“传染病监测中的数据科学方法”主题特刊的一部分。