Suppr超能文献

基于卷积神经网络的上颌窦分割的自适应局部区域水平集方法。

Adaptive Localizing Region-Based Level Set for Segmentation of Maxillary Sinus Based on Convolutional Neural Networks.

机构信息

Liaoning Huading Technology Co., Ltd., Shenyang, Liaoning 110167, China.

JiangSu PangPu Network Technology Co., Ltd., JiangSu, China.

出版信息

Comput Intell Neurosci. 2021 Nov 11;2021:4824613. doi: 10.1155/2021/4824613. eCollection 2021.

Abstract

In this paper, we propose a novel method, an adaptive localizing region-based level set using convolutional neural network, for improving performance of maxillary sinus segmentation. The healthy sinus without lesion inside is easy for conventional algorithms. However, in practice, most of the cases are filled with lesions of great heterogeneity which lead to lower accuracy. Therefore, we provide a strategy to avoid active contour from being trapped into a nontarget area. First, features of lesion and maxillary sinus are studied using a convolutional neural network (CNN) with two convolutional and three fully connected layers in architecture. In addition, outputs of CNN are devised to evaluate possibilities of zero level set location close to lesion or not. Finally, the method estimates stable points on the contour by an interactive process. If it locates in the lesion, the point needs to be paid a certain speed compensation based on the value of possibility via CNN, assisting itself to escape from the local minima. If not, the point preserves current status till convergence. Capabilities of our method have been demonstrated on a dataset of 200 CT images with possible lesions. To illustrate the strength of our method, we evaluated it against state-of-the-art methods, FLS and CRF-FCN. For all cases, our method, as assessed by Dice similarity coefficients, performed significantly better compared with currently available methods and obtained a significant Dice improvement, 0.25 than FLS and 0.12 than CRF-FCN, respectively, on an average.

摘要

在本文中,我们提出了一种新的方法,即基于卷积神经网络的自适应局部区域水平集方法,用于提高上颌窦分割的性能。对于没有内部病变的健康窦腔,传统算法很容易处理。然而,在实际中,大多数病例都充满了高度异质的病变,这导致了较低的准确性。因此,我们提供了一种策略来避免主动轮廓陷入非目标区域。首先,使用具有两个卷积层和三个全连接层结构的卷积神经网络(CNN)研究病变和上颌窦的特征。此外,设计 CNN 的输出以评估零水平集位置接近病变的可能性。最后,通过交互过程估计轮廓上的稳定点。如果它位于病变处,该点需要根据 CNN 的可能性值进行一定的速度补偿,帮助自己从局部最小值中逃脱。如果不是,则该点保持当前状态直到收敛。我们的方法在一个包含可能病变的 200 个 CT 图像数据集上进行了验证。为了说明我们方法的优势,我们将其与最先进的方法 FLS 和 CRF-FCN 进行了评估。对于所有病例,我们的方法的 Dice 相似系数评估结果明显优于现有的方法,与 FLS 相比,平均分别提高了 0.25,与 CRF-FCN 相比,平均提高了 0.12。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aebf/8601823/8bfb43ba6a6d/CIN2021-4824613.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验