Pandey Suraj, Calvey George, Katz Andrea M, Malla Tek Narsingh, Koua Faisal H M, Martin-Garcia Jose M, Poudyal Ishwor, Yang Jay-How, Vakili Mohammad, Yefanov Oleksandr, Zielinski Kara A, Bajt Sasa, Awel Salah, Doerner Katarina, Frank Matthias, Gelisio Luca, Jernigan Rebecca, Kirkwood Henry, Kloos Marco, Koliyadu Jayanath, Mariani Valerio, Miller Mitchell D, Mills Grant, Nelson Garrett, Olmos Jose L, Sadri Alireza, Sato Tokushi, Tolstikova Alexandra, Xu Weijun, Ourmazd Abbas, Spence John C H, Schwander Peter, Barty Anton, Chapman Henry N, Fromme Petra, Mancuso Adrian P, Phillips George N, Bean Richard, Pollack Lois, Schmidt Marius
Physics Department, University of Wisconsin-Milwaukee, 3135 North Maryland Avenue, Milwaukee, WI 53211, USA.
School of Applied and Engineering Physics, Cornell University, 254 Clark Hall, Ithaca, NY 14853, USA.
IUCrJ. 2021 Sep 9;8(Pt 6):878-895. doi: 10.1107/S2052252521008125. eCollection 2021 Nov 1.
Here, we illustrate what happens inside the catalytic cleft of an enzyme when substrate or ligand binds on single-millisecond timescales. The initial phase of the enzymatic cycle is observed with near-atomic resolution using the most advanced X-ray source currently available: the European XFEL (EuXFEL). The high repetition rate of the EuXFEL combined with our mix-and-inject technology enables the initial phase of ceftriaxone binding to the β-lactamase to be followed using time-resolved crystallography in real time. It is shown how a diffusion coefficient in enzyme crystals can be derived directly from the X-ray data, enabling the determination of ligand and enzyme-ligand concentrations at any position in the crystal volume as a function of time. In addition, the structure of the irreversible inhibitor sulbactam bound to the enzyme at a 66 ms time delay after mixing is described. This demonstrates that the EuXFEL can be used as an important tool for biomedically relevant research.
在这里,我们展示了底物或配体在单毫秒时间尺度上与酶结合时,酶催化裂隙内部会发生什么。使用目前可用的最先进的X射线源——欧洲X射线自由电子激光(EuXFEL),以近原子分辨率观察酶促循环的初始阶段。EuXFEL的高重复率与我们的混合注射技术相结合,使得能够通过时间分辨晶体学实时跟踪头孢曲松与β-内酰胺酶结合的初始阶段。展示了如何直接从X射线数据中得出酶晶体中的扩散系数,从而能够确定晶体体积中任何位置的配体和酶-配体浓度随时间的变化。此外,还描述了在混合后66毫秒时间延迟时与酶结合的不可逆抑制剂舒巴坦的结构。这表明EuXFEL可作为生物医学相关研究的重要工具。