Suppr超能文献

韩国雇佣歧视报告不足的性别差异:一种机器学习方法。

Gender differences in under-reporting hiring discrimination in Korea: a machine learning approach.

机构信息

Department of Public Health Sciences, Graduate School of Korea University, Seoul, Korea.

Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea.

出版信息

Epidemiol Health. 2021;43:e2021099. doi: 10.4178/epih.e2021099. Epub 2021 Nov 17.

Abstract

OBJECTIVES

This study was conducted to examine gender differences in under-reporting hiring discrimination by building a prediction model for workers who responded "not applicable (NA)" to a question about hiring discrimination despite being eligible to answer.

METHODS

Using data from 3,576 wage workers in the seventh wave (2004) of the Korea Labor and Income Panel Study, we trained and tested 9 machine learning algorithms using "yes" or "no" responses regarding the lifetime experience of hiring discrimination. We then applied the best-performing model to estimate the prevalence of experiencing hiring discrimination among those who answered "NA." Under-reporting of hiring discrimination was calculated by comparing the prevalence of hiring discrimination between the "yes" or "no" group and the "NA" group.

RESULTS

Based on the predictions from the random forest model, we found that 58.8% of the "NA" group were predicted to have experienced hiring discrimination, while 19.7% of the "yes" or "no" group reported hiring discrimination. Among the "NA" group, the predicted prevalence of hiring discrimination for men and women was 45.3% and 84.8%, respectively.

CONCLUSIONS

This study introduces a methodological strategy for epidemiologic studies to address the under-reporting of discrimination by applying machine learning algorithms.

摘要

目的

本研究旨在通过构建一个预测模型,来检验在报告雇佣歧视方面的性别差异,该模型针对的是那些尽管有资格回答但对雇佣歧视问题回答“不适用(NA)”的工人。

方法

本研究使用了来自韩国劳动力与收入面板研究第七波(2004 年)的 3576 名工资劳动者的数据,使用关于终身雇佣歧视经历的“是”或“否”回答,对 9 种机器学习算法进行了训练和测试。然后,我们将表现最佳的模型应用于估计那些回答“NA”的人经历雇佣歧视的比例。通过比较“是”或“否”组和“NA”组的雇佣歧视比例来计算雇佣歧视的漏报率。

结果

基于随机森林模型的预测,我们发现,58.8%的“NA”组被预测经历过雇佣歧视,而 19.7%的“是”或“否”组报告经历过雇佣歧视。在“NA”组中,男性和女性的预测雇佣歧视比例分别为 45.3%和 84.8%。

结论

本研究通过应用机器学习算法,为解决歧视漏报问题,引入了一种流行病学研究的方法策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d146/8920741/dc78a33a3b6e/epih-43-e2021099f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验