Suppr超能文献

基于数据驱动的 SARS-CoV-2 感染多尺度数学建模揭示了 COVID-19 患者之间的异质性。

Data-driven multi-scale mathematical modeling of SARS-CoV-2 infection reveals heterogeneity among COVID-19 patients.

机构信息

School of Mathematics and Statistics, Wuhan University, Wuhan, China.

Hubei Key Laboratory of Computational Science, Wuhan University, Wuhan, China.

出版信息

PLoS Comput Biol. 2021 Nov 24;17(11):e1009587. doi: 10.1371/journal.pcbi.1009587. eCollection 2021 Nov.

Abstract

Patients with coronavirus disease 2019 (COVID-19) often exhibit diverse disease progressions associated with various infectious ability, symptoms, and clinical treatments. To systematically and thoroughly understand the heterogeneous progression of COVID-19, we developed a multi-scale computational model to quantitatively understand the heterogeneous progression of COVID-19 patients infected with severe acute respiratory syndrome (SARS)-like coronavirus (SARS-CoV-2). The model consists of intracellular viral dynamics, multicellular infection process, and immune responses, and was formulated using a combination of differential equations and stochastic modeling. By integrating multi-source clinical data with model analysis, we quantified individual heterogeneity using two indexes, i.e., the ratio of infected cells and incubation period. Specifically, our simulations revealed that increasing the host antiviral state or virus induced type I interferon (IFN) production rate can prolong the incubation period and postpone the transition from asymptomatic to symptomatic outcomes. We further identified the threshold dynamics of T cell exhaustion in the transition between mild-moderate and severe symptoms, and that patients with severe symptoms exhibited a lack of naïve T cells at a late stage. In addition, we quantified the efficacy of treating COVID-19 patients and investigated the effects of various therapeutic strategies. Simulations results suggested that single antiviral therapy is sufficient for moderate patients, while combination therapies and prevention of T cell exhaustion are needed for severe patients. These results highlight the critical roles of IFN and T cell responses in regulating the stage transition during COVID-19 progression. Our study reveals a quantitative relationship underpinning the heterogeneity of transition stage during COVID-19 progression and can provide a potential guidance for personalized therapy in COVID-19 patients.

摘要

新型冠状病毒肺炎(COVID-19)患者常表现出不同的疾病进展,与不同的传染性、症状和临床治疗有关。为了系统和全面地了解 COVID-19 的异质性进展,我们开发了一种多尺度计算模型,以定量了解感染严重急性呼吸综合征(SARS)样冠状病毒(SARS-CoV-2)的 COVID-19 患者的异质性进展。该模型由细胞内病毒动力学、多细胞感染过程和免疫反应组成,使用微分方程和随机建模的组合来构建。通过将多源临床数据与模型分析相结合,我们使用两个指标(即感染细胞的比例和潜伏期)来量化个体异质性。具体来说,我们的模拟结果表明,增加宿主抗病毒状态或病毒诱导的 I 型干扰素(IFN)产生率可以延长潜伏期并推迟无症状到有症状结果的转变。我们进一步确定了 T 细胞耗竭在轻度-中度和重度症状之间转变中的阈值动力学,并且重度症状患者在晚期表现出缺乏幼稚 T 细胞。此外,我们量化了治疗 COVID-19 患者的疗效,并研究了各种治疗策略的效果。模拟结果表明,单一抗病毒治疗对于中度患者是足够的,而对于重度患者则需要联合治疗和预防 T 细胞耗竭。这些结果强调了 IFN 和 T 细胞反应在调节 COVID-19 进展过程中阶段转变中的关键作用。我们的研究揭示了 COVID-19 进展过程中过渡阶段异质性的定量关系,并可为 COVID-19 患者的个性化治疗提供潜在指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/452f/8654229/901816c7ca5a/pcbi.1009587.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验