Suppr超能文献

在机器学习中,多关节间隙宽度方法相较于最小关节间隙宽度方法在评估膝关节骨关节炎的放射学严重程度及疾病进展方面的优越性。

Superiority of Multiple-Joint Space Width over Minimum-Joint Space Width Approach in the Machine Learning for Radiographic Severity and Knee Osteoarthritis Progression.

作者信息

Cheung James Chung-Wai, Tam Andy Yiu-Chau, Chan Lok-Chun, Chan Ping-Keung, Wen Chunyi

机构信息

Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China.

Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, China.

出版信息

Biology (Basel). 2021 Oct 27;10(11):1107. doi: 10.3390/biology10111107.

Abstract

We compared the prediction efficiency of the multiple-joint space width (JSW) and the minimum-JSW on knee osteoarthritis (KOA) severity and progression by using a deep learning approach. A convolutional neural network (CNN) with ResU-Net architecture was developed for knee X-ray imaging segmentation and has attained a segmentation efficiency of 98.9% intersection over union (IoU) on the distal femur and proximal tibia. Later, by leveraging the image segmentation, the minimum and multiple-JSWs in the tibiofemoral joint were estimated and then validated by radiologist measurements in the Osteoarthritis Initiative (OAI) dataset using Pearson correlation and Bland-Altman plots. The agreement between the CNN-based estimation and radiologist's measurement of minimum-JSWs reached 0.7801 ( < 0.0001). The estimated JSWs were deployed to predict the radiographic severity and progression of KOA defined by Kellgren-Lawrence (KL) grades using the XGBoost model. The 64-point multiple-JSWs achieved the best performance in predicting KOA progression within 48 months, with the area-under-receiver operating characteristic curve (AUC) of 0.621, outperforming the commonly used minimum-JSW with 0.554 AUC. We provided a fully automated radiographic assessment tool for KOA with comparable performance to the radiologists and showed that the fine-grained measurement of multiple-JSWs yields superior prediction performance for KOA over the minimum-JSW.

摘要

我们采用深度学习方法比较了多关节间隙宽度(JSW)和最小JSW对膝关节骨关节炎(KOA)严重程度及进展的预测效率。开发了一种具有ResU-Net架构的卷积神经网络(CNN)用于膝关节X线成像分割,在股骨远端和胫骨近端的分割效率达到了98.9%的交并比(IoU)。随后,通过利用图像分割,估计了胫股关节的最小JSW和多JSW,然后在骨关节炎倡议(OAI)数据集中通过放射科医生的测量,使用Pearson相关性和Bland-Altman图进行验证。基于CNN的最小JSW估计值与放射科医生测量值之间的一致性达到0.7801(<0.0001)。将估计的JSW用于预测由Kellgren-Lawrence(KL)分级定义的KOA的放射学严重程度和进展,采用XGBoost模型。64点的多JSW在预测48个月内的KOA进展方面表现最佳,受试者操作特征曲线下面积(AUC)为0.621,优于常用的最小JSW,其AUC为0.554。我们为KOA提供了一种性能与放射科医生相当的全自动放射学评估工具,并表明多JSW的细粒度测量在KOA预测性能上优于最小JSW。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fe1/8614846/464602508327/biology-10-01107-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验