Suppr超能文献

机器学习揭示药用植物培养物中的营养失衡

Machine Learning Unmasked Nutritional Imbalances on the Medicinal Plant sp. Cultured .

作者信息

García-Pérez Pascual, Lozano-Milo Eva, Landin Mariana, Gallego Pedro Pablo

机构信息

Applied Plant and Soil Biology, Plant Biology and Soil Science Department, Biology Faculty, University of Vigo, Vigo, Spain.

Clúster de Investigación e Transferencia Agroalimentaria do Campus da Auga - Agri-Food Research and Transfer Cluster, University of Vigo, Ourense, Spain.

出版信息

Front Plant Sci. 2020 Dec 1;11:576177. doi: 10.3389/fpls.2020.576177. eCollection 2020.

Abstract

Plant nutrition is a crucial factor that is usually underestimated when designing plant culture protocols of unexploited plants. As a complex multifactorial process, the study of nutritional imbalances requires the use of time-consuming experimental designs and appropriate statistical and multiple regression analysis for the determination of critical parameters, whose results may be difficult to interpret when the number of variables is large. The use of machine learning (ML) supposes a cutting-edge approach to investigate multifactorial processes, with the aim of detecting non-linear relationships and critical factors affecting a determined response and their concealed interactions. Thus, in this work we applied artificial neural networks coupled to fuzzy logic, known as neurofuzzy logic, to determine the critical factors affecting the mineral nutrition of medicinal plants belonging to subgenus cultured . The application of neurofuzzy logic algorithms facilitate the interpretation of the results, as the technology is able to generate useful and understandable "IF-THEN" rules, that provide information about the factor(s) involved in a certain response. In this sense, ammonium, sulfate, molybdenum, copper and sodium were the most important nutrients that explain the variation in the culture establishment of the medicinal plants in a species-dependent manner. Thus, our results indicate that Bryophyllum spp. display a fine-tuning regulation of mineral nutrition, that was reported for the first time under conditions. Overall, neurofuzzy model was able to predict and identify masked interactions among such factors, providing a source of knowledge (helpful information) from the experimental data (non-informative ), in order to make the exploitation and valorization of medicinal plants with high phytochemical potential easier.

摘要

植物营养是一个关键因素,在设计未开发植物的培养方案时通常被低估。作为一个复杂的多因素过程,营养失衡的研究需要使用耗时的实验设计以及适当的统计和多元回归分析来确定关键参数,当变量数量众多时,其结果可能难以解释。机器学习(ML)的使用为研究多因素过程提供了一种前沿方法,目的是检测影响特定响应的非线性关系和关键因素及其隐藏的相互作用。因此,在这项工作中,我们应用了结合模糊逻辑的人工神经网络,即神经模糊逻辑,来确定影响属于培养亚属的药用植物矿物质营养的关键因素。神经模糊逻辑算法的应用有助于结果的解释,因为该技术能够生成有用且易于理解的“如果-那么”规则,这些规则提供了有关参与特定响应的因素的信息。从这个意义上说,铵、硫酸盐、钼、铜和钠是最重要的营养素,它们以物种依赖的方式解释了药用植物培养建立过程中的变化。因此,我们的结果表明,落地生根属植物表现出对矿物质营养的精细调节,这是在条件下首次报道的。总体而言,神经模糊模型能够预测和识别这些因素之间隐藏的相互作用,从实验数据(无信息)中提供知识来源(有用信息),以便更轻松地开发和利用具有高植物化学潜力的药用植物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3eaa/7729169/9a295d7bee0a/fpls-11-576177-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验