León-González José C, Toscano-Negrette Rafael G, Morales A L, Vinasco J A, Yücel M B, Sari H, Kasapoglu E, Sakiroglu S, Mora-Ramos M E, Restrepo R L, Duque C A
Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia.
Departamento de Física y Electrónica, Universidad de Córdoba, Carrera 6 No. 77-305, Montería 230002, Colombia.
Nanomaterials (Basel). 2023 Apr 25;13(9):1461. doi: 10.3390/nano13091461.
Within the framework of effective mass theory, we investigate the effects of spin-orbit interaction (SOI) and Zeeman splitting on the electronic properties of an electron confined in GaAs single quantum rings. Energies and envelope wavefunctions in the system are determined by solving the Schrödinger equation via the finite element method. First, we consider an inversely quadratic model potential to describe electron confining profiles in a single quantum ring. The study also analyzes the influence of applied electric and magnetic fields. Solutions for eigenstates are then used to evaluate the linear inter-state light absorption coefficient through the corresponding resonant transition energies and electric dipole matrix moment elements, assuming circular polarization for the incident radiation. Results show that both SOI effects and Zeeman splitting reduce the absorption intensity for the considered transitions compared to the case when these interactions are absent. In addition, the magnitude and position of the resonant peaks have non-monotonic behavior with external magnetic fields. Secondly, we investigate the electronic and optical properties of the electron confined in the quantum ring with a topological defect in the structure; the results show that the crossings in the energy curves as a function of the magnetic field are eliminated, and, therefore, an improvement in transition energies occurs. In addition, the dipole matrix moments present a non-oscillatory behavior compared to the case when a topological defect is not considered.
在有效质量理论框架内,我们研究自旋轨道相互作用(SOI)和塞曼分裂对限制在GaAs单量子环中的电子的电子性质的影响。通过有限元方法求解薛定谔方程来确定系统中的能量和包络波函数。首先,我们考虑一个反二次模型势来描述单量子环中的电子限制分布。该研究还分析了外加电场和磁场的影响。然后,假设入射辐射为圆偏振,通过相应的共振跃迁能量和电偶极矩矩阵元,利用本征态解来评估线性态间光吸收系数。结果表明,与不存在这些相互作用的情况相比,SOI效应和塞曼分裂都降低了所考虑跃迁的吸收强度。此外,共振峰的大小和位置随外部磁场呈现非单调行为。其次,我们研究了结构中具有拓扑缺陷的量子环中受限电子的电子和光学性质;结果表明,作为磁场函数的能量曲线中的交叉被消除,因此跃迁能量得到改善。此外,与不考虑拓扑缺陷的情况相比,偶极矩矩阵呈现非振荡行为。