Suppr超能文献

一项关于用户特征对可穿戴式跌倒检测系统性能影响的研究。

A study on the impact of the users' characteristics on the performance of wearable fall detection systems.

机构信息

Departamento de Tecnología Electrónica, Universidad de Málaga, CEI Andalucía TECH, E.T.S.I. Telecomunicación, Bulevar Louis Pasteur 35, 29010, Málaga, Spain.

Departamento de Tecnología Electrónica, Instituto Universitario de Investigación en Telecomunicación (TELMA), Universidad de Málaga, CEI Andalucía TECH, E.T.S.I. Telecomunicación, Bulevar Louis Pasteur 35, 29010, Málaga, Spain.

出版信息

Sci Rep. 2021 Nov 26;11(1):23011. doi: 10.1038/s41598-021-02537-z.

Abstract

Wearable Fall Detection Systems (FDSs) have gained much research interest during last decade. In this regard, Machine Learning (ML) classifiers have shown great efficiency in discriminating falls and conventional movements or Activities of Daily Living (ADLs) based on the analysis of the signals captured by transportable inertial sensors. Due to the intrinsic difficulties of training and testing this type of detectors in realistic scenarios and with their target audience (older adults), FDSs are normally benchmarked against a predefined set of ADLs and emulated falls executed by volunteers in a controlled environment. In most studies, however, samples from the same experimental subjects are used to both train and evaluate the FDSs. In this work, we investigate the performance of ML-based FDS systems when the test subjects have physical characteristics (weight, height, body mass index, age, gender) different from those of the users considered for the test phase. The results seem to point out that certain divergences (weight, height) of the users of both subsets (training ad test) may hamper the effectiveness of the classifiers (a reduction of up 20% in sensitivity and of up to 5% in specificity is reported). However, it is shown that the typology of the activities included in these subgroups has much greater relevance for the discrimination capability of the classifiers (with specificity losses of up to 95% if the activity types for training and testing strongly diverge).

摘要

可穿戴跌倒检测系统(FDS)在过去十年中引起了广泛的研究兴趣。在这方面,机器学习(ML)分类器在基于可移植惯性传感器捕获的信号分析来区分跌倒和传统运动或日常生活活动(ADL)方面显示出了很高的效率。由于在现实场景中对这类探测器进行训练和测试以及针对目标受众(老年人)存在内在困难,因此 FDS 通常是根据一组预定义的 ADL 和在受控环境中由志愿者执行的模拟跌倒进行基准测试的。然而,在大多数研究中,相同实验对象的样本既用于训练又用于评估 FDS。在这项工作中,当测试对象具有与测试阶段考虑的用户不同的身体特征(体重、身高、体重指数、年龄、性别)时,我们研究了基于 ML 的 FDS 系统的性能。结果似乎表明,两个子集(训练和测试)的用户的某些差异(体重、身高)可能会影响分类器的有效性(报告的敏感性降低了 20%,特异性降低了 5%)。然而,研究表明,这些子组中包含的活动类型对于分类器的区分能力具有更大的相关性(如果训练和测试的活动类型差异很大,则特异性损失高达 95%)。

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验